Syntactic vs Semantic Linear Abstraction and Refinement of Neural Networks

Calvin Chau, Jan Křetínský, S. Mohr
{"title":"Syntactic vs Semantic Linear Abstraction and Refinement of Neural Networks","authors":"Calvin Chau, Jan Křetínský, S. Mohr","doi":"10.48550/arXiv.2307.10891","DOIUrl":null,"url":null,"abstract":"Abstraction is a key verification technique to improve scalability. However, its use for neural networks is so far extremely limited. Previous approaches for abstracting classification networks replace several neurons with one of them that is similar enough. We can classify the similarity as defined either syntactically (using quantities on the connections between neurons) or semantically (on the activation values of neurons for various inputs). Unfortunately, the previous approaches only achieve moderate reductions, when implemented at all. In this work, we provide a more flexible framework where a neuron can be replaced with a linear combination of other neurons, improving the reduction. We apply this approach both on syntactic and semantic abstractions, and implement and evaluate them experimentally. Further, we introduce a refinement method for our abstractions, allowing for finding a better balance between reduction and precision.","PeriodicalId":335085,"journal":{"name":"Automated Technology for Verification and Analysis","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Technology for Verification and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.10891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstraction is a key verification technique to improve scalability. However, its use for neural networks is so far extremely limited. Previous approaches for abstracting classification networks replace several neurons with one of them that is similar enough. We can classify the similarity as defined either syntactically (using quantities on the connections between neurons) or semantically (on the activation values of neurons for various inputs). Unfortunately, the previous approaches only achieve moderate reductions, when implemented at all. In this work, we provide a more flexible framework where a neuron can be replaced with a linear combination of other neurons, improving the reduction. We apply this approach both on syntactic and semantic abstractions, and implement and evaluate them experimentally. Further, we introduce a refinement method for our abstractions, allowing for finding a better balance between reduction and precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络的句法与语义线性抽象与细化
抽象是提高可伸缩性的关键验证技术。然而,到目前为止,它在神经网络中的应用非常有限。以前的分类网络抽象方法是用一个足够相似的神经元替换多个神经元。我们可以根据语法定义(使用神经元之间连接的数量)或语义定义(根据不同输入的神经元的激活值)对相似性进行分类。不幸的是,以前的方法在实施时只能实现适度的减少。在这项工作中,我们提供了一个更灵活的框架,其中一个神经元可以被其他神经元的线性组合取代,从而提高了减少。我们将这种方法应用于语法和语义抽象,并对它们进行了实验实现和评价。此外,我们为我们的抽象引入了一种细化方法,允许在简化和精确之间找到更好的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Equivalence Checking of Quantum Circuits of Clifford Gates An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks Syntactic vs Semantic Linear Abstraction and Refinement of Neural Networks Synthesis of Distributed Protocols by Enumeration Modulo Isomorphisms Minimally Comparing Relational Abstract Domains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1