Leader following consensus for multi-agent systems with stochastic packet dropout

Xiang Gong, Yaodong Pan, Jianning Li, H. Su
{"title":"Leader following consensus for multi-agent systems with stochastic packet dropout","authors":"Xiang Gong, Yaodong Pan, Jianning Li, H. Su","doi":"10.1109/ICCA.2013.6564861","DOIUrl":null,"url":null,"abstract":"This paper is to develop a novel consensus algorithm or protocol for multi-agent systems in the event of communication link failure over the network. System dynamics are defined as a double-integrator system with the topology of MAS modeled by the graph theory. Bernoulli distribution is applied to represent the data dropout during operation. The sufficient conditions for the stabilization controller design is developed by Lyapunov-based methodologies and Linear matrix inequality (LMIs) techniques. The feasibility of the given LMIs is analyzed to ensure the stabilization controller design, which ensures the MAS to achieve the consensus. Leader-following numerical simulations with a group of agents are successfully conducted to demonstrate the effectiveness of the novel consensus algorithm in this paper. The results are studied to show that the consensus achievement is incorporating with the data loss probability up to 95%, however the higher data loss rate may cause longer time for agents to achieve consensus.","PeriodicalId":336534,"journal":{"name":"2013 10th IEEE International Conference on Control and Automation (ICCA)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th IEEE International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2013.6564861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper is to develop a novel consensus algorithm or protocol for multi-agent systems in the event of communication link failure over the network. System dynamics are defined as a double-integrator system with the topology of MAS modeled by the graph theory. Bernoulli distribution is applied to represent the data dropout during operation. The sufficient conditions for the stabilization controller design is developed by Lyapunov-based methodologies and Linear matrix inequality (LMIs) techniques. The feasibility of the given LMIs is analyzed to ensure the stabilization controller design, which ensures the MAS to achieve the consensus. Leader-following numerical simulations with a group of agents are successfully conducted to demonstrate the effectiveness of the novel consensus algorithm in this paper. The results are studied to show that the consensus achievement is incorporating with the data loss probability up to 95%, however the higher data loss rate may cause longer time for agents to achieve consensus.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机丢包的多智能体系统的领导一致性
本文旨在开发一种新的多智能体系统在网络通信链路故障情况下的共识算法或协议。将系统动力学定义为一个双积分器系统,MAS的拓扑结构用图论建模。采用伯努利分布表示运行过程中的数据丢失。利用李雅普诺夫方法和线性矩阵不等式(lmi)技术,给出了稳定控制器设计的充分条件。分析了给定lmi的可行性,以确保稳定化控制器的设计,从而保证MAS达到共识。成功地进行了一组智能体的领导跟随数值模拟,验证了新共识算法的有效性。研究结果表明,在数据丢失概率高达95%的情况下,agent达成共识的时间较长,但数据丢失率越高,agent达成共识的时间越长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cooperative task planning for multiple autonomous UAVs with graph representation and genetic algorithm Real-time measure and control system of biped walking robot based on sensor Simultaneously scheduling production plan and maintenance policy for a single machine with failure uncertainty Fuzzy grey sliding mode control for maximum power point tracking of photovoltaic systems A data-driven approach for sensor fault diagnosis in gearbox of wind energy conversion system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1