{"title":"Active enhanced tunable high-Q on-chip E-band resonators in 130nm SiGe BiCMOS","authors":"N. Singh, T. Stander","doi":"10.1109/IMARC.2015.7411403","DOIUrl":null,"url":null,"abstract":"A simulation study of a high-Q resonator in a commercial 130nm SiGe BiCMOS process for E-band frequencies is presented. The resonator is a planar quarter-wave microstrip resonator that uses a HBT based negative resistance circuit to counter losses and enhance the unloaded Q-factor. Using 3D EM (FEM) and circuit co-simulation, enhanced unloaded Q-factors of up to 892 are shown at a frequency of 83.5 GHz compared to the unenhanced unloaded Q-factor of 7. The negative resistance circuit sufficiently compensates for low Q-factors of the planar resonator and the varactor. The resonator is also shown to be continuously tunable in frequency from 82 to 84 GHz, and in unloaded Q-factor from 7 to 892, whilst maintaining unconditional stability in all tuning states.","PeriodicalId":307742,"journal":{"name":"2015 IEEE MTT-S International Microwave and RF Conference (IMaRC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE MTT-S International Microwave and RF Conference (IMaRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMARC.2015.7411403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A simulation study of a high-Q resonator in a commercial 130nm SiGe BiCMOS process for E-band frequencies is presented. The resonator is a planar quarter-wave microstrip resonator that uses a HBT based negative resistance circuit to counter losses and enhance the unloaded Q-factor. Using 3D EM (FEM) and circuit co-simulation, enhanced unloaded Q-factors of up to 892 are shown at a frequency of 83.5 GHz compared to the unenhanced unloaded Q-factor of 7. The negative resistance circuit sufficiently compensates for low Q-factors of the planar resonator and the varactor. The resonator is also shown to be continuously tunable in frequency from 82 to 84 GHz, and in unloaded Q-factor from 7 to 892, whilst maintaining unconditional stability in all tuning states.