Deep Reinforcement Learning with Applications in Transportation

Zhiwei Qin, Jian Tang, Jieping Ye
{"title":"Deep Reinforcement Learning with Applications in Transportation","authors":"Zhiwei Qin, Jian Tang, Jieping Ye","doi":"10.1145/3292500.3332299","DOIUrl":null,"url":null,"abstract":"This tutorial aims to provide the audience with a guided introduction to deep reinforcement learning (DRL) with specially curated application case studies in transportation. The tutorial covers both theory and practice, with more emphasis on the practical aspects of DRL that are pertinent to tackle transportation challenges. Some core examples include online ride order dispatching, fleet management, traffic signals control, route planning, and autonomous driving.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3332299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This tutorial aims to provide the audience with a guided introduction to deep reinforcement learning (DRL) with specially curated application case studies in transportation. The tutorial covers both theory and practice, with more emphasis on the practical aspects of DRL that are pertinent to tackle transportation challenges. Some core examples include online ride order dispatching, fleet management, traffic signals control, route planning, and autonomous driving.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度强化学习在交通运输中的应用
本教程旨在为读者提供深度强化学习(DRL)的引导性介绍,并特别策划了交通运输中的应用案例研究。本教程涵盖理论和实践,更强调与解决交通挑战相关的DRL的实践方面。一些核心的例子包括在线乘车调度、车队管理、交通信号控制、路线规划和自动驾驶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tackle Balancing Constraint for Incremental Semi-Supervised Support Vector Learning HATS Temporal Probabilistic Profiles for Sepsis Prediction in the ICU Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework Adaptive Influence Maximization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1