Learning visual object and word association

Yie-Tarng Chen, Ting-Zhi Wang, Wen-Hsien Fang, Didik Purwanto
{"title":"Learning visual object and word association","authors":"Yie-Tarng Chen, Ting-Zhi Wang, Wen-Hsien Fang, Didik Purwanto","doi":"10.1109/ICSIPA.2017.8120577","DOIUrl":null,"url":null,"abstract":"This paper presents a new discriminative learning framework to associate the relationship between the objects and the words in an image and perform template matching scheme for complex association patterns. The problem is first formulated as a bipartite graph matching problem. Thereafter, structural support vector machine (SVM) is employed to obtain the optimal compatibility function to encode the association rules between the objects and the words. Moreover, an iterative inference procedure is developed to alternatively infer the association of visual objects and texts and the selection of the template model. Simulations show that the new method outperforms the existing competing counterparts.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"498 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new discriminative learning framework to associate the relationship between the objects and the words in an image and perform template matching scheme for complex association patterns. The problem is first formulated as a bipartite graph matching problem. Thereafter, structural support vector machine (SVM) is employed to obtain the optimal compatibility function to encode the association rules between the objects and the words. Moreover, an iterative inference procedure is developed to alternatively infer the association of visual objects and texts and the selection of the template model. Simulations show that the new method outperforms the existing competing counterparts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习视觉对象和单词联想
本文提出了一种新的判别学习框架,用于关联图像中物体与单词之间的关系,并对复杂的关联模式执行模板匹配方案。该问题首先被表述为一个二部图匹配问题。然后,利用结构支持向量机(structural support vector machine, SVM)得到最优兼容函数,对对象与单词之间的关联规则进行编码。此外,还开发了一个迭代推理程序来交替地推断视觉对象和文本的关联以及模板模型的选择。仿真结果表明,该方法优于现有的同类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced forensic speaker verification using multi-run ICA in the presence of environmental noise and reverberation conditions A real-time multi-class multi-object tracker using YOLOv2 Hybrid neural network and regression tree ensemble pruned by simulated annealing for virtual flow metering application Hybrid DWT and MFCC feature warping for noisy forensic speaker verification in room reverberation A deep architecture for face recognition based on multiple feature extraction techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1