Lightweight Object Detection Method for Mobile Robot Platform

Yuncheng Sang, Han Huang, Shuangqing Ma, Shouwen Cai, Zhen Shi
{"title":"Lightweight Object Detection Method for Mobile Robot Platform","authors":"Yuncheng Sang, Han Huang, Shuangqing Ma, Shouwen Cai, Zhen Shi","doi":"10.1145/3507548.3507550","DOIUrl":null,"url":null,"abstract":"∗We present some experienced improvements to YOLOv5s for mobile robot platforms that occupy many system resources and are difficult to meet the requirements of the actual application. Firstly, the FPN + PAN structure is redesigned to replace this complex structure into a dilated residual module with fewer parameters and calculations. The dilated residual module is composed of dilated residual blocks with different dilation rates stacked together. Secondly, we switch some convolution modules to improved Ghost modules in the backbone. The improved Ghost modules concatenate feature maps obtained by convolution with ones generated by a linear transformation. Then, the two parts of feature maps are shuffled to boost information fusion. The model is trained on the COCO dataset. In this paper, mAP_0.5 is 56.1%, mAP_0.5:0.95 is 35.7%, and the speed is 6.1% faster than YOLOv5s. The experimental results show that the method can further increase the inference speed to ensure detection accuracy. It can well solve the task of object detection on the mobile robot platform.","PeriodicalId":414908,"journal":{"name":"Proceedings of the 2021 5th International Conference on Computer Science and Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 5th International Conference on Computer Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3507548.3507550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

∗We present some experienced improvements to YOLOv5s for mobile robot platforms that occupy many system resources and are difficult to meet the requirements of the actual application. Firstly, the FPN + PAN structure is redesigned to replace this complex structure into a dilated residual module with fewer parameters and calculations. The dilated residual module is composed of dilated residual blocks with different dilation rates stacked together. Secondly, we switch some convolution modules to improved Ghost modules in the backbone. The improved Ghost modules concatenate feature maps obtained by convolution with ones generated by a linear transformation. Then, the two parts of feature maps are shuffled to boost information fusion. The model is trained on the COCO dataset. In this paper, mAP_0.5 is 56.1%, mAP_0.5:0.95 is 35.7%, and the speed is 6.1% faster than YOLOv5s. The experimental results show that the method can further increase the inference speed to ensure detection accuracy. It can well solve the task of object detection on the mobile robot platform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动机器人平台轻量化目标检测方法
对于占用大量系统资源且难以满足实际应用要求的移动机器人平台,我们提出了对YOLOv5s的一些经验改进。首先,对FPN + PAN结构进行了重新设计,将该复杂结构替换为一个参数和计算量更少的扩展剩余模块。膨胀残差模块由不同膨胀率的膨胀残差块堆叠而成。其次,我们将一些卷积模块转换为改进的Ghost模块。改进的Ghost模块将卷积得到的特征映射与线性变换生成的特征映射连接起来。然后,对特征图的两个部分进行洗牌,增强信息融合。该模型是在COCO数据集上训练的。在本文中,mAP_0.5为56.1%,mAP_0.5:0.95为35.7%,速度比YOLOv5s快6.1%。实验结果表明,该方法可以进一步提高推理速度,保证检测精度。它可以很好地解决移动机器人平台上的目标检测任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-atlas segmentation of knee cartilage via Semi-supervised Regional Label Propagation Comparative Study of Music Visualization based on CiteSpace at China and the World Enhanced Efficient YOLOv3-tiny for Object Detection Identification of Plant Stomata Based on YOLO v5 Deep Learning Model Predictive Screening of Accident Black Spots based on Deep Neural Models of Road Networks and Facilities: A Case Study based on a District in Hong Kong
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1