A machine learning approach for image retrieval tasks

Achref Ouni
{"title":"A machine learning approach for image retrieval tasks","authors":"Achref Ouni","doi":"10.1109/IVCNZ51579.2020.9290617","DOIUrl":null,"url":null,"abstract":"Several methods based on visual methods (BoVW, VLAD,…) or recent deep leaning methods try to solve the CBIR problem. Bag of visual words (BoVW) is one of most module used for both classification and image recognition. But, even with the high performance of BoVW, the problem of retrieving the image by content is still a challenge in computer vision. In this paper, we propose an improvement on a bag of visual words by increasing the accuracy of the retrieved candidates. In addition, we reduce the signature construction time by exploiting the powerful of the approximate nearest neighbor algorithms (ANNs). Experimental results will be applied to widely data sets (UKB, Wang, Corel 10K) and with different descriptors (CMI, SURF).","PeriodicalId":164317,"journal":{"name":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVCNZ51579.2020.9290617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Several methods based on visual methods (BoVW, VLAD,…) or recent deep leaning methods try to solve the CBIR problem. Bag of visual words (BoVW) is one of most module used for both classification and image recognition. But, even with the high performance of BoVW, the problem of retrieving the image by content is still a challenge in computer vision. In this paper, we propose an improvement on a bag of visual words by increasing the accuracy of the retrieved candidates. In addition, we reduce the signature construction time by exploiting the powerful of the approximate nearest neighbor algorithms (ANNs). Experimental results will be applied to widely data sets (UKB, Wang, Corel 10K) and with different descriptors (CMI, SURF).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像检索任务的机器学习方法
一些基于视觉方法(BoVW, VLAD,…)或最近的深度学习方法试图解决CBIR问题。视觉词包(BoVW)是分类和图像识别中应用最广泛的模块之一。但是,即使BoVW具有很高的性能,根据内容检索图像的问题仍然是计算机视觉中的一个挑战。在本文中,我们提出了一种改进视觉词包的方法,通过提高检索候选词的准确性。此外,利用近似最近邻算法(ann)的强大功能,减少了签名构建时间。实验结果将应用于广泛的数据集(UKB, Wang, Corel 10K)和不同的描述符(CMI, SURF)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image and Text fusion for UPMC Food-101 using BERT and CNNs Predicting Cherry Quality Using Siamese Networks Wavelet Based Thresholding for Fourier Ptychography Microscopy Improving the Efficient Neural Architecture Search via Rewarding Modifications A fair comparison of the EEG signal classification methods for alcoholic subject identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1