Tool Wear Condition Monitoring Using Emitted Sound Signals By Simple Machine Learning Technique

C. L. ,. Perumal, S. B. ,. Bhadrinathan, A. Samraj
{"title":"Tool Wear Condition Monitoring Using Emitted Sound Signals By Simple Machine Learning Technique","authors":"C. L. ,. Perumal, S. B. ,. Bhadrinathan, A. Samraj","doi":"10.37394/232022.2022.2.22","DOIUrl":null,"url":null,"abstract":"As a continuous enhancement to the tool wear monitoring using non-disturbing method of sound wave analysis, a simple machine learning technique enhances the prediction to better levels and reduces the procedures. A simple linear regression Algorithm was used to train and predict the trends of various degrees of tool wear to distinguish them from each other. The results based on this simple linear regression were successful in showing the difference of sound patterns and are reported.","PeriodicalId":443735,"journal":{"name":"DESIGN, CONSTRUCTION, MAINTENANCE","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DESIGN, CONSTRUCTION, MAINTENANCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232022.2022.2.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a continuous enhancement to the tool wear monitoring using non-disturbing method of sound wave analysis, a simple machine learning technique enhances the prediction to better levels and reduces the procedures. A simple linear regression Algorithm was used to train and predict the trends of various degrees of tool wear to distinguish them from each other. The results based on this simple linear regression were successful in showing the difference of sound patterns and are reported.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于简单机器学习技术的刀具磨损状态监测
作为使用无干扰声波分析方法的工具磨损监测的不断增强,一种简单的机器学习技术将预测提高到更好的水平并减少了程序。采用简单的线性回归算法对刀具不同磨损程度的变化趋势进行训练和预测,以区分刀具不同磨损程度的变化趋势。基于这种简单线性回归的结果成功地显示了声音模式的差异,并被报道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bicycle Lanes Design for Road User Safety Modifying the Kalman Filter for Random Jitter in Sampling Time Improving Industrial Production Quality Assurance: An Analysis of MCDM and FMEA Methodologies Optimizing Failure Modes and Effects Analysis with Fuzzy Multiattribute Grey Theory and DEA An Innovation of Flap Design for Energy Efficiency Lightweight Flying Vehicle Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1