Hybrid sampling for multiclass imbalanced problem: Case study of students' performance prediction

Wanthanee Prachuabsupakij, N. Soonthornphisaj
{"title":"Hybrid sampling for multiclass imbalanced problem: Case study of students' performance prediction","authors":"Wanthanee Prachuabsupakij, N. Soonthornphisaj","doi":"10.1109/ICACSIS.2014.7065824","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to propose a method namely CLUSS - CLUstering and SMOTE Sampling that can improve the prediction performance on multiclass imbalanced problem with students' performance data. Firstly, the clustering approach is used to create a new subset from all majority classes. The new subsets consists of the groups of majority classes instances which have different characteristics. Secondly, oversampling technique is applied to generate the new synthetic minority class instances. Then, CLUSS constructs the new training set by combining all minority class instances and the majority class instances in each subset. Finally, for each training set decision tree is used as a classifier to predict the classes via majority vote. The experimental results show that CLUSS achieved high performance on both majority and minority classes.","PeriodicalId":443250,"journal":{"name":"2014 International Conference on Advanced Computer Science and Information System","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advanced Computer Science and Information System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2014.7065824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The aim of this paper is to propose a method namely CLUSS - CLUstering and SMOTE Sampling that can improve the prediction performance on multiclass imbalanced problem with students' performance data. Firstly, the clustering approach is used to create a new subset from all majority classes. The new subsets consists of the groups of majority classes instances which have different characteristics. Secondly, oversampling technique is applied to generate the new synthetic minority class instances. Then, CLUSS constructs the new training set by combining all minority class instances and the majority class instances in each subset. Finally, for each training set decision tree is used as a classifier to predict the classes via majority vote. The experimental results show that CLUSS achieved high performance on both majority and minority classes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多班不平衡问题的混合抽样:学生成绩预测的个案研究
本文的目的是提出一种基于CLUSS -聚类和SMOTE采样的方法来提高学生成绩数据对多班不平衡问题的预测性能。首先,使用聚类方法从所有多数类中创建一个新的子集。新的子集由具有不同特征的多数类实例组组成。其次,采用过采样技术生成新的合成少数类实例;然后,CLUSS通过组合每个子集中的所有少数类实例和多数类实例来构建新的训练集。最后,对每个训练集使用决策树作为分类器,通过多数投票来预测类别。实验结果表明,CLUSS在多数类和少数类上都取得了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model prediction for accreditation of public junior high school in Bogor using spatial decision tree Campaign 2.0: Analysis of social media utilization in 2014 Jakarta legislative election Performance of robust two-dimensional principal component for classification Extending V-model practices to support SRE to build secure web application A comparison of backpropagation and LVQ: A case study of lung sound recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1