{"title":"A static pattern-independent technique for power grid voltage integrity verification","authors":"D. Kouroussis, F. Najm","doi":"10.1145/775832.775861","DOIUrl":null,"url":null,"abstract":"Design verification must be included the power grid. Checking that the voltage on the power grid does not drop by more than some critical threshold is a very difficult problem, for at least two reasons: 1. the obviously large size of the power grids for modern high-performance chips, and 2. the difficulty of setting up the right simulation conditions for the power grid that provide some measure of a realistic worst case voltage drop. The huge number of possible circuit operational modes or workloads makes it impossible to do exhaustive analysis. We propose a static technique for power grid verification, where static is in the sense of static timing analysis, meaning that it does not depend on, nor require, user-specified stimulus to drive a simulation. The verification is posed as an optimization problem under user-supplied current constraints. We propose that current constraints are the right kind of abstraction to use in order to develop a practical methodology for power grid verification. We present our verification approach, and report on the results of applying it to a number of test-case power grids","PeriodicalId":167477,"journal":{"name":"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/775832.775861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87
Abstract
Design verification must be included the power grid. Checking that the voltage on the power grid does not drop by more than some critical threshold is a very difficult problem, for at least two reasons: 1. the obviously large size of the power grids for modern high-performance chips, and 2. the difficulty of setting up the right simulation conditions for the power grid that provide some measure of a realistic worst case voltage drop. The huge number of possible circuit operational modes or workloads makes it impossible to do exhaustive analysis. We propose a static technique for power grid verification, where static is in the sense of static timing analysis, meaning that it does not depend on, nor require, user-specified stimulus to drive a simulation. The verification is posed as an optimization problem under user-supplied current constraints. We propose that current constraints are the right kind of abstraction to use in order to develop a practical methodology for power grid verification. We present our verification approach, and report on the results of applying it to a number of test-case power grids