State estimation for complex-valued neural networks with time-varying delays

Bin Qiu, X. Liao, Bo Zhou
{"title":"State estimation for complex-valued neural networks with time-varying delays","authors":"Bin Qiu, X. Liao, Bo Zhou","doi":"10.1109/ICICIP.2015.7388229","DOIUrl":null,"url":null,"abstract":"In this paper, the state estimation problem is investigated for complex-valued neural networks(CVNNS) with discrete interval time-varying delays as well as general activation funcions. By constructing appropriate Lyapunov-Krasovskii functional and employing Newton-Leibniz formulation, linear matrix inequality(LMI) technique and computational criteria in complex domain, some conditions are derived to estimate the neuron state with some available output measurements such that the error-state system is global asymptotically stable. One example are given to show the effectiveness of the theoretical analysis.","PeriodicalId":265426,"journal":{"name":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2015.7388229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, the state estimation problem is investigated for complex-valued neural networks(CVNNS) with discrete interval time-varying delays as well as general activation funcions. By constructing appropriate Lyapunov-Krasovskii functional and employing Newton-Leibniz formulation, linear matrix inequality(LMI) technique and computational criteria in complex domain, some conditions are derived to estimate the neuron state with some available output measurements such that the error-state system is global asymptotically stable. One example are given to show the effectiveness of the theoretical analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时变时滞复值神经网络的状态估计
研究了具有离散区间时变时滞和一般激活函数的复值神经网络(CVNNS)的状态估计问题。通过构造适当的Lyapunov-Krasovskii泛函,利用牛顿-莱布尼兹公式、线性矩阵不等式(LMI)技术和复域计算准则,导出了在给定输出测量值下估计神经元状态的条件,使误差状态系统全局渐近稳定。最后通过一个算例验证了理论分析的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new integrable hamiltonian hierarchy and associated integrable coupling system Memristor-based neural network PID controller for buck converter Online critic-identifier-actor algorithm for optimal control of nonlinear systems Optimal control for deferrable loads scheduling under the constraint of electricity supply Performance analysis for WFRFT-OFDM systems to carrier frequency offset in doubly selective fading channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1