{"title":"The Prediction of Noise from Turbulent Boundary Layers Attached to Porous Media","authors":"Elisha R. Pager, Steven A. E. Miller","doi":"10.2514/6.2018-3297","DOIUrl":null,"url":null,"abstract":"Aerospace vehicles, wind tunnel test section walls, and other structures often contain porosity that alters the turbulent boundary layer and radiated noise. A semi-empirical mathematical model is developed to predict and analyze the acoustic radiation from turbulent boundary layers over porous media. The model is an acoustic analogy that depends on local flow-field statistics. These statistics are calculated through a steady Reynoldsaveraged Navier-Stokes computational fluid dynamics solver that includes porous material. Acoustic predictions are conducted for four subsonic Mach numbers without a pressure gradient. At each Mach number, four porosities with constant liner depth and porous turbulent length scale are examined along with the non-porous solution. The flow-field is validated through comparison with acoustic measurement. Predictions are conducted to ascertain changes in acoustic radiation with varying porosity. We find that noise is amplified or reduced in a non-intuitive way with the introduction of porosity, variation of frequency, and increase of Mach number.","PeriodicalId":429337,"journal":{"name":"2018 AIAA/CEAS Aeroacoustics Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 AIAA/CEAS Aeroacoustics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2018-3297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Aerospace vehicles, wind tunnel test section walls, and other structures often contain porosity that alters the turbulent boundary layer and radiated noise. A semi-empirical mathematical model is developed to predict and analyze the acoustic radiation from turbulent boundary layers over porous media. The model is an acoustic analogy that depends on local flow-field statistics. These statistics are calculated through a steady Reynoldsaveraged Navier-Stokes computational fluid dynamics solver that includes porous material. Acoustic predictions are conducted for four subsonic Mach numbers without a pressure gradient. At each Mach number, four porosities with constant liner depth and porous turbulent length scale are examined along with the non-porous solution. The flow-field is validated through comparison with acoustic measurement. Predictions are conducted to ascertain changes in acoustic radiation with varying porosity. We find that noise is amplified or reduced in a non-intuitive way with the introduction of porosity, variation of frequency, and increase of Mach number.