Design of an FPGA based adaptive neural controller for intelligent robot navigation

M. Azhar, K. Dimond
{"title":"Design of an FPGA based adaptive neural controller for intelligent robot navigation","authors":"M. Azhar, K. Dimond","doi":"10.1109/DSD.2002.1115380","DOIUrl":null,"url":null,"abstract":"This article describes an alternative hardware solution to be implemented on FPGAs (field programmable gate array) for collision free robot navigation. A RAM based artificial neural network (ANN) was considered as the heart of the controller due to the advantage of its ease of implementation in conventional hardware. The structure of the ANN was well suited to realize the experiments for evolutionary robotics (ER). The hardware implementation gives massive parallelism of neural networks and the FPGA allows fast IC prototyping and low cost modifications.","PeriodicalId":330609,"journal":{"name":"Proceedings Euromicro Symposium on Digital System Design. Architectures, Methods and Tools","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Euromicro Symposium on Digital System Design. Architectures, Methods and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2002.1115380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

This article describes an alternative hardware solution to be implemented on FPGAs (field programmable gate array) for collision free robot navigation. A RAM based artificial neural network (ANN) was considered as the heart of the controller due to the advantage of its ease of implementation in conventional hardware. The structure of the ANN was well suited to realize the experiments for evolutionary robotics (ER). The hardware implementation gives massive parallelism of neural networks and the FPGA allows fast IC prototyping and low cost modifications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于FPGA的智能机器人导航自适应神经控制器设计
本文描述了一种在fpga(现场可编程门阵列)上实现无碰撞机器人导航的替代硬件解决方案。基于RAM的人工神经网络(ANN)由于其易于在传统硬件中实现的优点,被认为是控制器的核心。该人工神经网络的结构非常适合于进化机器人实验的实现。硬件实现提供了神经网络的大规模并行性,FPGA允许快速集成电路原型和低成本修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault latencies of concurrent checking FSMs On the fundamental design gap in terabit per second packet switching Bit-level allocation of multiple-precision specifications Improving mW/MHz ratio in FPGAs pipelined designs Hardware implementation of a memory allocator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1