A class-specific ensemble feature selection approach for classification problems

ACM SE '10 Pub Date : 2010-04-15 DOI:10.1145/1900008.1900054
C. Soares, Philicity Williams, J. Gilbert, G. Dozier
{"title":"A class-specific ensemble feature selection approach for classification problems","authors":"C. Soares, Philicity Williams, J. Gilbert, G. Dozier","doi":"10.1145/1900008.1900054","DOIUrl":null,"url":null,"abstract":"Due to substantial increases in data acquisition and storage, data pre-processing techniques such as feature selection have become increasingly popular in classification tasks. This research proposes a new feature selection algorithm, Class-specific Ensemble Feature Selection (CEFS), which finds class-specific subsets of features optimal to each available classification in the dataset. Each subset is then combined with a classifier to create an ensemble feature selection model which is further used to predict unseen instances. CEFS attempts to provide the diversity and base classifier disagreement sought after in effective ensemble models by providing highly useful, yet highly exclusive feature subsets. Also, the use of a wrapper method gives each subset the chance to perform optimally under the respective base classifier. Preliminary experiments implementing this innovative approach suggest potential improvements of more than 10% over existing methods.","PeriodicalId":333104,"journal":{"name":"ACM SE '10","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SE '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1900008.1900054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Due to substantial increases in data acquisition and storage, data pre-processing techniques such as feature selection have become increasingly popular in classification tasks. This research proposes a new feature selection algorithm, Class-specific Ensemble Feature Selection (CEFS), which finds class-specific subsets of features optimal to each available classification in the dataset. Each subset is then combined with a classifier to create an ensemble feature selection model which is further used to predict unseen instances. CEFS attempts to provide the diversity and base classifier disagreement sought after in effective ensemble models by providing highly useful, yet highly exclusive feature subsets. Also, the use of a wrapper method gives each subset the chance to perform optimally under the respective base classifier. Preliminary experiments implementing this innovative approach suggest potential improvements of more than 10% over existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对分类问题的类特定集成特征选择方法
由于数据采集和存储的大量增加,特征选择等数据预处理技术在分类任务中越来越受欢迎。本研究提出了一种新的特征选择算法——类特定集成特征选择(Class-specific Ensemble feature selection, CEFS),该算法在数据集中找到对每个可用分类最优的类特定特征子集。然后将每个子集与分类器组合以创建集成特征选择模型,该模型进一步用于预测未见的实例。CEFS试图通过提供高度有用但高度排他的特征子集来提供有效集成模型中所追求的多样性和基本分类器分歧。此外,使用包装器方法使每个子集有机会在各自的基本分类器下实现最佳性能。实施这种创新方法的初步实验表明,与现有方法相比,这种方法的潜在改进超过10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Teaching software engineering using open source software Dynamic ontology version control Visualization of the CreSIS Greenland data sets Java nano patterns: a set of reusable objects Towards power efficient consolidation and distribution of virtual machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1