Yan Zhang, Zili Zhang, Yueqiang Li, Weihu Zhou, Yan-peng He, Wei Li
{"title":"Phase measuring method and error compensation in 3D profile measurement","authors":"Yan Zhang, Zili Zhang, Yueqiang Li, Weihu Zhou, Yan-peng He, Wei Li","doi":"10.1117/12.2512073","DOIUrl":null,"url":null,"abstract":"3D profile measurement is widely used in many areas such as manufacturing, computer-aided design, virtual reality and medical diagnostics. As one of the core technologies in 3D profile measurement, digital fringe pattern projection is a highly sensitive noncontact technique for obtaining the 3D shape of an object. Then the grating pattern deformed by the measured object is captured by CCD cameras and decoded using appropriate algorithms so that the shape of the object can be deduced. In this paper, three sets of phase shift fringe patterns with different frequencies are projected on the surface of the measured object by a DLP projector and the deformed patterns are captured by two cameras. Then the four-step phase shift method is used to obtain the three groups of fringe patterns phases, and the three-frequency heterodyne method is adopted to unwrap the phase and obtain the absolute phase. The causes of the phase errors are analyzed and the subsequent compensation method of gamma correction of grating pattern is proposed to eliminate the main errors. Experiments are carried out and the results verify the accuracy and effectiveness of the proposed methods.","PeriodicalId":115119,"journal":{"name":"International Symposium on Precision Engineering Measurement and Instrumentation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Precision Engineering Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2512073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
3D profile measurement is widely used in many areas such as manufacturing, computer-aided design, virtual reality and medical diagnostics. As one of the core technologies in 3D profile measurement, digital fringe pattern projection is a highly sensitive noncontact technique for obtaining the 3D shape of an object. Then the grating pattern deformed by the measured object is captured by CCD cameras and decoded using appropriate algorithms so that the shape of the object can be deduced. In this paper, three sets of phase shift fringe patterns with different frequencies are projected on the surface of the measured object by a DLP projector and the deformed patterns are captured by two cameras. Then the four-step phase shift method is used to obtain the three groups of fringe patterns phases, and the three-frequency heterodyne method is adopted to unwrap the phase and obtain the absolute phase. The causes of the phase errors are analyzed and the subsequent compensation method of gamma correction of grating pattern is proposed to eliminate the main errors. Experiments are carried out and the results verify the accuracy and effectiveness of the proposed methods.