In-vitro investigation of cholesterol removal, ß-galactosidase synthesis, antioxidant, and antidiabetic potential of probiotic organisms

Jahanvee Chanpura, Shilpa Gupte
{"title":"In-vitro investigation of cholesterol removal, ß-galactosidase synthesis, antioxidant, and antidiabetic potential of probiotic organisms","authors":"Jahanvee Chanpura, Shilpa Gupte","doi":"10.7324/jabb.2022.100521","DOIUrl":null,"url":null,"abstract":"The present study is aimed to determine some important health beneficial properties of probiotic isolates such as cholesterol removal, β -galactosidase production, antioxidant, and anti-diabetic activity. Nine probiotic isolates were screened for Bile Salt Hydrolase (BSH) activity and potential BSH producers were selected for cholesterol removal study. Isolate B11 has shown significant cholesterol removal ability (88 ± 0.2%) after 24 h and this property was also analyzed with variable concentrations, time profile, with live, and dead cells as well as from egg yolk with simulation treatment. As probiotics improve lactose intolerance, all isolates were assessed for their lactose utilizing and β -galactosidase production ability where maximum enzyme activity was observed in case of isolate D25 (226 ± 0.30 Miller units). All the isolates were also assessed for their antioxidant potential using four different methods such as reducing power assay, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, 2,2-diphenyl-1-picrylhydrazyl assay, and superoxide dismutase activity. Out of nine isolates, isolate D25 and B11 have shown significant antioxidant property. Further, these isolates were also subjected to anti-diabetic study, where isolate D25 (89 ± 0.01%) and B11 (98 ± 0.30%) have shown high α -glucosidase inhibition which indicate their effective anti-diabetic activity. Hence, overall probiotic isolate D25 and B11 have shown significant health beneficial properties and they were further identified as Lactiplantibacillus plantarum and Pediococcus pentosaceus , respectively.","PeriodicalId":423079,"journal":{"name":"Journal of Applied Biology & Biotechnology","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biology & Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7324/jabb.2022.100521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present study is aimed to determine some important health beneficial properties of probiotic isolates such as cholesterol removal, β -galactosidase production, antioxidant, and anti-diabetic activity. Nine probiotic isolates were screened for Bile Salt Hydrolase (BSH) activity and potential BSH producers were selected for cholesterol removal study. Isolate B11 has shown significant cholesterol removal ability (88 ± 0.2%) after 24 h and this property was also analyzed with variable concentrations, time profile, with live, and dead cells as well as from egg yolk with simulation treatment. As probiotics improve lactose intolerance, all isolates were assessed for their lactose utilizing and β -galactosidase production ability where maximum enzyme activity was observed in case of isolate D25 (226 ± 0.30 Miller units). All the isolates were also assessed for their antioxidant potential using four different methods such as reducing power assay, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, 2,2-diphenyl-1-picrylhydrazyl assay, and superoxide dismutase activity. Out of nine isolates, isolate D25 and B11 have shown significant antioxidant property. Further, these isolates were also subjected to anti-diabetic study, where isolate D25 (89 ± 0.01%) and B11 (98 ± 0.30%) have shown high α -glucosidase inhibition which indicate their effective anti-diabetic activity. Hence, overall probiotic isolate D25 and B11 have shown significant health beneficial properties and they were further identified as Lactiplantibacillus plantarum and Pediococcus pentosaceus , respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
益生菌去除胆固醇、合成ß-半乳糖苷酶、抗氧化和抗糖尿病潜能的体外研究
本研究旨在确定益生菌分离物的一些重要的健康有益特性,如胆固醇去除、β -半乳糖苷酶生产、抗氧化和抗糖尿病活性。对9株分离的益生菌进行了胆汁盐水解酶(BSH)活性筛选,并选择了可能产生BSH的菌株进行胆固醇去除研究。分离物B11在24小时后显示出显著的胆固醇去除能力(88±0.2%),并在不同浓度、时间曲线、活细胞和死细胞以及模拟处理的蛋黄中分析了这一特性。由于益生菌可以改善乳糖不耐症,因此对所有分离株的乳糖利用和β -半乳糖苷酶生产能力进行了评估,其中分离株D25的酶活性最高(226±0.30 Miller单位)。采用还原力法、2,2′-氮基-双(3-乙基苯并噻唑-6-磺酸法、2,2-二苯基-1-picrylhydrazyl法和超氧化物歧化酶活性等4种不同的方法对所有分离物的抗氧化能力进行了评估。在9个分离物中,分离物D25和B11表现出显著的抗氧化性能。结果表明,分离物D25(89±0.01%)和B11(98±0.30%)具有较高的α -葡萄糖苷酶抑制活性,具有良好的抗糖尿病活性。因此,整体益生菌分离物D25和B11显示出显著的健康有益特性,并进一步鉴定它们分别为植物乳杆菌(Lactiplantibacillus plantarum)和戊糖Pediococcus pentsaceus。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In vitro antioxidant and acetylcholinesterase activities of catechin-loaded green fabricated zinc oxide nanoparticles Investigation on the antifungal activity of Aspergillus giganteus in different culture conditions An epidemiological outbreak of scrub typhus caused by Orientia tsutsugamushi – A comprehensive review Potassium-Solubilizing Microorganisms for Agricultural Sustainability Suppression of the RAGE gene expression in RAW 264.7 murine leukemia cell line by ethyl acetate extract of Mikania micrantha (L.) Kunth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1