Query Generation from Multiple Media Examples

Reede Ren, J. Jose
{"title":"Query Generation from Multiple Media Examples","authors":"Reede Ren, J. Jose","doi":"10.1109/CBMI.2009.13","DOIUrl":null,"url":null,"abstract":"This paper exploits a media document representation called feature terms to generate a query from multiple media examples, e.g. images. A feature term denotes a continuous interval of a media feature dimension. This approach (1) helps feature accumulation from multiple examples; (2) enables the exploration of text-based retrieval models for multimedia retrieval. Three criteria, minimised χ2, minimised AC/DC and maximised entropy, are proposed to optimise feature term selection. Two ranking functions, KL divergence and BM25, are used for relevance estimation. Experiments on Corel photo collection and TRECVid 2006 collection show the effectiveness in image/video retrieval.","PeriodicalId":417012,"journal":{"name":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2009.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper exploits a media document representation called feature terms to generate a query from multiple media examples, e.g. images. A feature term denotes a continuous interval of a media feature dimension. This approach (1) helps feature accumulation from multiple examples; (2) enables the exploration of text-based retrieval models for multimedia retrieval. Three criteria, minimised χ2, minimised AC/DC and maximised entropy, are proposed to optimise feature term selection. Two ranking functions, KL divergence and BM25, are used for relevance estimation. Experiments on Corel photo collection and TRECVid 2006 collection show the effectiveness in image/video retrieval.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从多个媒体示例生成查询
本文利用一种称为特征项的媒体文档表示,从多个媒体示例(例如图像)中生成查询。特征项表示媒体特征维度的连续间隔。这种方法(1)有助于从多个示例中积累特征;(2)探索基于文本的多媒体检索模型。提出了最小化χ2、最小化AC/DC和最大化熵三个标准来优化特征项选择。两个排序函数,KL散度和BM25,用于相关性估计。在Corel照片集和TRECVid 2006集上的实验表明了该方法在图像/视频检索中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motion Vector Based Moving Object Detection and Tracking in the MPEG Compressed Domain A Comparison of L_1 Norm and L_2 Norm Multiple Kernel SVMs in Image and Video Classification Monophony vs Polyphony: A New Method Based on Weibull Bivariate Models Kernel Discriminant Analysis Using Triangular Kernel for Semantic Scene Classification Biometric Responses to Music-Rich Segments in Films: The CDVPlex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1