Extracting Topics Based on Word2Vec and Improved Jaccard Similarity Coefficient

Chunzi Wu, Bai Wang
{"title":"Extracting Topics Based on Word2Vec and Improved Jaccard Similarity Coefficient","authors":"Chunzi Wu, Bai Wang","doi":"10.1109/DSC.2017.70","DOIUrl":null,"url":null,"abstract":"To extract key topics from news articles, this paper researches into a new method to discover an efficient way to construct text vectors and improve the efficiency and accuracy of document clustering based on Word2Vec model. This paper proposes a novel algorithm, which combines Jaccard similarity coefficient and inverse dimension frequency to calculate the importance degree between each dimension in text vector and the corresponding document. Text vectors is constructed based on the importance degree and improve the accuracy of text cluster and key topics extraction. The algorithm is also implemented on MapReduce and the efficiency is improved.","PeriodicalId":427998,"journal":{"name":"2017 IEEE Second International Conference on Data Science in Cyberspace (DSC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Second International Conference on Data Science in Cyberspace (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC.2017.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

To extract key topics from news articles, this paper researches into a new method to discover an efficient way to construct text vectors and improve the efficiency and accuracy of document clustering based on Word2Vec model. This paper proposes a novel algorithm, which combines Jaccard similarity coefficient and inverse dimension frequency to calculate the importance degree between each dimension in text vector and the corresponding document. Text vectors is constructed based on the importance degree and improve the accuracy of text cluster and key topics extraction. The algorithm is also implemented on MapReduce and the efficiency is improved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Word2Vec和改进Jaccard相似系数的主题提取
为了从新闻文章中提取关键主题,本文研究了一种基于Word2Vec模型的新方法,发现了一种有效的文本向量构造方法,提高了文档聚类的效率和准确性。本文提出了一种结合Jaccard相似系数和逆维数频率来计算文本向量中各维与对应文档之间重要程度的新算法。基于重要度构造文本向量,提高了文本聚类和关键主题提取的准确性。该算法也在MapReduce上实现,提高了效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting the Popularity of News Based on Competitive Matrix EMMBTT: A Novel Event Evolution Model Based on TFxIEF and TDC in Tracking News Streams DPLK-Means: A Novel Differential Privacy K-Means Mechanism Learning Automata Based Approach for Influence Maximization Problem on Social Networks CPS Information Security Risk Evaluation System Based on Petri Net
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1