CloudGazer: A divide-and-conquer approach to monitoring and optimizing cloud-based networks

Holger Stitz, S. Gratzl, M. T. Krieger, M. Streit
{"title":"CloudGazer: A divide-and-conquer approach to monitoring and optimizing cloud-based networks","authors":"Holger Stitz, S. Gratzl, M. T. Krieger, M. Streit","doi":"10.1109/PACIFICVIS.2015.7156375","DOIUrl":null,"url":null,"abstract":"With the rise of virtualization and cloud-based networks of various scales and degrees of complexity, new approaches to managing such infrastructures are required. In these networks, relationships among components can be of arbitrary cardinality (1:1, 1:n, n:m), making it challenging for administrators to investigate which components influence others. In this paper we present CloudGazer, a scalable visualization system that allows users to monitor and optimize cloud-based networks effectively to reduce energy consumption and to increase the quality of service. Instead of visualizing the overall network, we split the graph into semantic perspectives that provide a much simpler view of the network. CloudGazer is a multiple coordinated view system that visualizes either static or live status information about the components of a perspective while reintroducing lost inter-perspective relationships on demand using dynamically created inlays. We demonstrate the effectiveness of CloudGazer in two usage scenarios: The first is based on a real-world network of our domain partners where static performance parameters are used to find an optimal design. In the second scenario we use the VAST 2013 Challenge dataset to demonstrate how the system can be employed with live streaming data.","PeriodicalId":177381,"journal":{"name":"2015 IEEE Pacific Visualization Symposium (PacificVis)","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2015.7156375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

With the rise of virtualization and cloud-based networks of various scales and degrees of complexity, new approaches to managing such infrastructures are required. In these networks, relationships among components can be of arbitrary cardinality (1:1, 1:n, n:m), making it challenging for administrators to investigate which components influence others. In this paper we present CloudGazer, a scalable visualization system that allows users to monitor and optimize cloud-based networks effectively to reduce energy consumption and to increase the quality of service. Instead of visualizing the overall network, we split the graph into semantic perspectives that provide a much simpler view of the network. CloudGazer is a multiple coordinated view system that visualizes either static or live status information about the components of a perspective while reintroducing lost inter-perspective relationships on demand using dynamically created inlays. We demonstrate the effectiveness of CloudGazer in two usage scenarios: The first is based on a real-world network of our domain partners where static performance parameters are used to find an optimal design. In the second scenario we use the VAST 2013 Challenge dataset to demonstrate how the system can be employed with live streaming data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CloudGazer:一种分而治之的方法,用于监控和优化基于云的网络
随着各种规模和复杂程度的虚拟化和基于云的网络的兴起,需要新的方法来管理这些基础设施。在这些网络中,组件之间的关系可以是任意基数(1:1,1:1:n, n:m),这使得管理员很难调查哪些组件会影响其他组件。在本文中,我们介绍了CloudGazer,这是一个可扩展的可视化系统,允许用户有效地监控和优化基于云的网络,以减少能源消耗并提高服务质量。我们没有可视化整个网络,而是将图拆分为语义透视图,以提供更简单的网络视图。CloudGazer是一个多协调视图系统,它可以可视化透视图组件的静态或动态状态信息,同时根据需要使用动态创建的嵌体重新引入丢失的透视图间关系。我们在两种使用场景中展示了CloudGazer的有效性:第一个是基于我们的领域合作伙伴的真实网络,其中使用静态性能参数来找到最佳设计。在第二个场景中,我们使用VAST 2013 Challenge数据集来演示系统如何与实时流数据一起使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clutter-aware label layout MetaTracts - A method for robust extraction and visualization of carbon fiber bundles in fiber reinforced composites Variational circular treemaps for interactive visualization of hierarchical data Advanced lighting for unstructured-grid data visualization Laplacian-based dynamic graph visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1