H. Bui, M. Lech, E. Cheng, K. Neville, Richardt H. Wilkinson, I. Burnett
{"title":"Randomized dimensionality reduction of deep network features for image object recognition","authors":"H. Bui, M. Lech, E. Cheng, K. Neville, Richardt H. Wilkinson, I. Burnett","doi":"10.1109/SIGTELCOM.2018.8325778","DOIUrl":null,"url":null,"abstract":"This study investigates data dimensionality reduction for image object recognition. The dimensionality reduction was applied to features extracted from an existing pre-trained Deep Neural Network (DNN) structure, the AlexNet. An analysis of the neurons in different layers of the AlexNet revealed an incremental increase in the pair-wise orthogonality between weight vectors of neurons in each layer, towards higher-level layers. This observation motivated the current study to evaluate the possibility of performing randomized dimensionality reduction by mimicking the observed orthogonality property of the high-level layers on activations of low-level layers of the AlexNet. Image object classification experiments have shown that the proposed random orthogonal projection method performed well in multiple tests, consistently outperforming the well-known statistics-based sparse random projection. Apart from being data independent, the proposed approach achieved performances comparable with the state-of-the-art techniques, but with lower computational requirements.","PeriodicalId":236488,"journal":{"name":"2018 2nd International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 2nd International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIGTELCOM.2018.8325778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates data dimensionality reduction for image object recognition. The dimensionality reduction was applied to features extracted from an existing pre-trained Deep Neural Network (DNN) structure, the AlexNet. An analysis of the neurons in different layers of the AlexNet revealed an incremental increase in the pair-wise orthogonality between weight vectors of neurons in each layer, towards higher-level layers. This observation motivated the current study to evaluate the possibility of performing randomized dimensionality reduction by mimicking the observed orthogonality property of the high-level layers on activations of low-level layers of the AlexNet. Image object classification experiments have shown that the proposed random orthogonal projection method performed well in multiple tests, consistently outperforming the well-known statistics-based sparse random projection. Apart from being data independent, the proposed approach achieved performances comparable with the state-of-the-art techniques, but with lower computational requirements.