{"title":"A Low-Complexity Adaptive Extended Min-Sum Algorithm for Non-Binary LDPC Codes","authors":"Min-Ho Kim, Kyeong-Bin Park, Ki-Seok Chung","doi":"10.1109/ICCIA49625.2020.00048","DOIUrl":null,"url":null,"abstract":"The extended min-sum algorithm (EMS) for decoding non-binary low density parity check (NB-LDPC) codes reduces the decoding complexity by truncating the message vector by retaining only the most reliable symbols. However, the EMS algorithm does not consider that the noise of the received codeword is gradually reduced as the iteration count goes up. In this paper, we propose a low-complexity adaptive EMS algorithm, called threshold-based EMS (TB-EMS). The TB-EMS algorithm has a simple adaptive rule to calculate the new message vector length compared to the A-EMS. The proposed algorithm selects one of two message vector lengths. Experimental results show that the proposed algorithm reduces the decoding complexity with minimal performance degradation compared with the EMS algorithm. Further, the decoding performance of the TB-EMS is better than A-EMS.","PeriodicalId":237536,"journal":{"name":"2020 5th International Conference on Computational Intelligence and Applications (ICCIA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIA49625.2020.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The extended min-sum algorithm (EMS) for decoding non-binary low density parity check (NB-LDPC) codes reduces the decoding complexity by truncating the message vector by retaining only the most reliable symbols. However, the EMS algorithm does not consider that the noise of the received codeword is gradually reduced as the iteration count goes up. In this paper, we propose a low-complexity adaptive EMS algorithm, called threshold-based EMS (TB-EMS). The TB-EMS algorithm has a simple adaptive rule to calculate the new message vector length compared to the A-EMS. The proposed algorithm selects one of two message vector lengths. Experimental results show that the proposed algorithm reduces the decoding complexity with minimal performance degradation compared with the EMS algorithm. Further, the decoding performance of the TB-EMS is better than A-EMS.