Structured Neural Network with Low Complexity for MIMO Detection

Siyu Liao, Chunhua Deng, Lingjia Liu, Bo Yuan
{"title":"Structured Neural Network with Low Complexity for MIMO Detection","authors":"Siyu Liao, Chunhua Deng, Lingjia Liu, Bo Yuan","doi":"10.1109/SiPS47522.2019.9020365","DOIUrl":null,"url":null,"abstract":"Neural network has been applied into MIMO detection problem and has achieved the state-of-the-art performance. However, it is hard to deploy these large and deep neural network models to resource constrained platforms. In this paper, we impose the circulant structure inside neural network to generate a low complexity model for MIMO detection. This method can train the circulant structured network from scratch or convert from an existing dense neural network model. Experiments show that this algorithm can achieve half the model size with negligible performance drop.","PeriodicalId":256971,"journal":{"name":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"2005 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS47522.2019.9020365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Neural network has been applied into MIMO detection problem and has achieved the state-of-the-art performance. However, it is hard to deploy these large and deep neural network models to resource constrained platforms. In this paper, we impose the circulant structure inside neural network to generate a low complexity model for MIMO detection. This method can train the circulant structured network from scratch or convert from an existing dense neural network model. Experiments show that this algorithm can achieve half the model size with negligible performance drop.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低复杂度的结构化神经网络用于MIMO检测
神经网络已被应用于MIMO检测问题,并取得了较好的性能。然而,这些大型深度神经网络模型很难部署到资源受限的平台上。在本文中,我们在神经网络中引入循环结构来生成一个低复杂度的MIMO检测模型。该方法可以从零开始训练循环结构化网络,也可以从现有的密集神经网络模型进行转换。实验表明,该算法可以将模型大小减半,而性能下降可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory Reduction through Experience Classification f or Deep Reinforcement Learning with Prioritized Experience Replay Learning to Design Constellation for AWGN Channel Using Auto-Encoders SIR Beam Selector for Amazon Echo Devices Audio Front-End AVX-512 Based Software Decoding for 5G LDPC Codes Pipelined Implementations for Belief Propagation Polar Decoder: From Formula to Hardware
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1