{"title":"Iterative learning system to intercept a ball for humanoid soccer player","authors":"Mauricio A. Gomez, Yongho Kim, E. Matson","doi":"10.1109/ICARA.2015.7081200","DOIUrl":null,"url":null,"abstract":"Soccer for humanoid robots has been a field of study for a long time, and the majority of the teams that compete in a tournament only focus until now in reaching the ball and drive it to score. That is the reason why we think that a more collaborative work would be a real improvement towards accomplishing the RoboCup 2050 ultimate goal of a fully autonomous humanoid team defeating the winning team of the FIFA World Cup Championship of the same year. In this paper, we propose a training system for humanoid-type soccer robot, that will learn to precisely intercept of a ball when is kicked by one robot of the same team. Vision system for ball detection is used as input to predict trajectory of the ball. A knowledge based learning algorithm enables the player to get higher chance to intercept the ball. We confirmed that the proposed approach can be a part of intelligent robot in the field of humanoid soccer.","PeriodicalId":176657,"journal":{"name":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA.2015.7081200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Soccer for humanoid robots has been a field of study for a long time, and the majority of the teams that compete in a tournament only focus until now in reaching the ball and drive it to score. That is the reason why we think that a more collaborative work would be a real improvement towards accomplishing the RoboCup 2050 ultimate goal of a fully autonomous humanoid team defeating the winning team of the FIFA World Cup Championship of the same year. In this paper, we propose a training system for humanoid-type soccer robot, that will learn to precisely intercept of a ball when is kicked by one robot of the same team. Vision system for ball detection is used as input to predict trajectory of the ball. A knowledge based learning algorithm enables the player to get higher chance to intercept the ball. We confirmed that the proposed approach can be a part of intelligent robot in the field of humanoid soccer.