Interactive detection of incrementally learned concepts in images with ranking and semantic query interpretation

K. Schutte, H. Bouma, J. Schavemaker, L. Daniele, Maya Sappelli, G. Koot, P. Eendebak, G. Azzopardi, Martijn Spitters, M. D. Boer, M. Kruithof, Paul Brandt
{"title":"Interactive detection of incrementally learned concepts in images with ranking and semantic query interpretation","authors":"K. Schutte, H. Bouma, J. Schavemaker, L. Daniele, Maya Sappelli, G. Koot, P. Eendebak, G. Azzopardi, Martijn Spitters, M. D. Boer, M. Kruithof, Paul Brandt","doi":"10.1109/CBMI.2015.7153623","DOIUrl":null,"url":null,"abstract":"The number of networked cameras is growing exponentially. Multiple applications in different domains result in an increasing need to search semantically over video sensor data. In this paper, we present the GOOSE demonstrator, which is a real-time general-purpose search engine that allows users to pose natural language queries to retrieve corresponding images. Top-down, this demonstrator interprets queries, which are presented as an intuitive graph to collect user feedback. Bottom-up, the system automatically recognizes and localizes concepts in images and it can incrementally learn novel concepts. A smart ranking combines both and allows effective retrieval of relevant images.","PeriodicalId":387496,"journal":{"name":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2015.7153623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The number of networked cameras is growing exponentially. Multiple applications in different domains result in an increasing need to search semantically over video sensor data. In this paper, we present the GOOSE demonstrator, which is a real-time general-purpose search engine that allows users to pose natural language queries to retrieve corresponding images. Top-down, this demonstrator interprets queries, which are presented as an intuitive graph to collect user feedback. Bottom-up, the system automatically recognizes and localizes concepts in images and it can incrementally learn novel concepts. A smart ranking combines both and allows effective retrieval of relevant images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于排序和语义查询解释的图像增量学习概念交互检测
联网摄像机的数量呈指数级增长。不同领域的多种应用导致对视频传感器数据进行语义搜索的需求日益增加。在本文中,我们展示了GOOSE演示器,它是一个实时通用搜索引擎,允许用户提出自然语言查询来检索相应的图像。自顶向下,该演示器解释查询,并将查询呈现为直观的图形,以收集用户反馈。自下而上,系统自动识别和定位图像中的概念,并逐步学习新概念。智能排名将两者结合起来,并允许有效地检索相关图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical evaluation of dissimilarity measures for 3D object retrieval with application to multi-feature retrieval A factorized model for multiple SVM and multi-label classification for large scale multimedia indexing On the use of statistical semantics for metadata-based social image retrieval Automatic detection of repetitive actions in a video Hierarchical clustering pseudo-relevance feedback for social image search result diversification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1