Error Resilient Transformers: A Novel Soft Error Vulnerability Guided Approach to Error Checking and Suppression

Kwondo Ma, C. Amarnath, A. Chatterjee
{"title":"Error Resilient Transformers: A Novel Soft Error Vulnerability Guided Approach to Error Checking and Suppression","authors":"Kwondo Ma, C. Amarnath, A. Chatterjee","doi":"10.1109/ETS56758.2023.10174239","DOIUrl":null,"url":null,"abstract":"Transformer networks have achieved remarkable success in Natural Language Processing (NLP) and Computer Vision applications. However, the underlying large volumes of Transformer computations demand high reliability and resilience to soft errors in processor hardware. The objective of this research is to develop efficient techniques for design of error resilient Transformer architectures. To enable this, we first perform a soft error vulnerability analysis of every fully connected layers in Transformer computations. Based on this study, error detection and suppression modules are selectively introduced into datapaths to restore Transformer performance under anticipated error rate conditions. Memory access errors and neuron output errors are detected using checksums of linear Transformer computations. Correction consists of determining output neurons with out-of-range values and suppressing the same to zero. For a Transformer with nominal BLEU score of 52.7, such vulnerability guided selective error suppression can recover language translation performance from a BLEU score of 0 to 50.774 with as much as 0.001 probability of activation error, incurring negligible memory and computation overheads.","PeriodicalId":211522,"journal":{"name":"2023 IEEE European Test Symposium (ETS)","volume":"23 Vol. 23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS56758.2023.10174239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transformer networks have achieved remarkable success in Natural Language Processing (NLP) and Computer Vision applications. However, the underlying large volumes of Transformer computations demand high reliability and resilience to soft errors in processor hardware. The objective of this research is to develop efficient techniques for design of error resilient Transformer architectures. To enable this, we first perform a soft error vulnerability analysis of every fully connected layers in Transformer computations. Based on this study, error detection and suppression modules are selectively introduced into datapaths to restore Transformer performance under anticipated error rate conditions. Memory access errors and neuron output errors are detected using checksums of linear Transformer computations. Correction consists of determining output neurons with out-of-range values and suppressing the same to zero. For a Transformer with nominal BLEU score of 52.7, such vulnerability guided selective error suppression can recover language translation performance from a BLEU score of 0 to 50.774 with as much as 0.001 probability of activation error, incurring negligible memory and computation overheads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
错误弹性变压器:一种新的软错误漏洞导向的错误检测与抑制方法
变压器网络在自然语言处理(NLP)和计算机视觉应用方面取得了显著的成功。然而,底层的大量Transformer计算需要对处理器硬件中的软错误具有高可靠性和弹性。本研究的目的是开发有效的技术设计误差弹性变压器架构。为了启用这一点,我们首先对Transformer计算中的每个完全连接的层执行软错误漏洞分析。在此基础上,有选择地在数据路径中引入错误检测和抑制模块,以在预期错误率条件下恢复Transformer的性能。使用线性变压器计算的校验和来检测存储器访问错误和神经元输出错误。校正包括确定输出值超出范围的神经元并将其抑制为零。对于一个名义BLEU分数为52.7的Transformer,这种漏洞引导的选择性错误抑制可以在BLEU分数为0到50.774的情况下恢复语言翻译性能,激活错误的概率高达0.001,产生的内存和计算开销可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Counterfeit Detection by Semiconductor Process Technology Inspection Semi-Supervised Deep Learning for Microcontroller Performance Screening FINaL: Driving High-Level Fault Injection Campaigns with Natural Language Learn to Tune: Robust Performance Tuning in Post-Silicon Validation A Resilience Framework for Synapse Weight Errors and Firing Threshold Perturbations in RRAM Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1