A Neural Network Based User Identification for Tor Networks: Comparison Analysis of Activation Function Using Friedman Test

Tetsuya Oda, Ryoichiro Obukata, M. Yamada, Taro Ishitaki, M. Hiyama, L. Barolli
{"title":"A Neural Network Based User Identification for Tor Networks: Comparison Analysis of Activation Function Using Friedman Test","authors":"Tetsuya Oda, Ryoichiro Obukata, M. Yamada, Taro Ishitaki, M. Hiyama, L. Barolli","doi":"10.1109/CISIS.2016.89","DOIUrl":null,"url":null,"abstract":"Due to the amount of anonymity afforded to users of the Tor infrastructure, Tor has become a useful tool for malicious users. With Tor, the users are able to compromise the non-repudiation principle of computer security. Also, the potentially hackers may launch attacks such as DDoS or identity theft behind Tor. For this reason, there are needed new systems and models to detect or identify the bad behavior users in Tor networks. In this paper, we present the application of Neural Networks (NNs) for user identification in Tor networks. We used the Back-propagation NN and constructed a Tor server, a Deep Web browser (Tor client) and a Surface Web browser. Then, the client sends the data browsing to the Tor server using the Tor network. We used Wireshark Network Analyzer to get the data and then used the Back-propagation NN to make the approximation. For evaluation we considered Number of Packets (NoP) metric and activation function. We present many simulation results considering Tor client. We analyze the data using Friedman test. From the results, we see that by using softplus activation function the system can identify Tor client.","PeriodicalId":249236,"journal":{"name":"2016 10th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISIS.2016.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the amount of anonymity afforded to users of the Tor infrastructure, Tor has become a useful tool for malicious users. With Tor, the users are able to compromise the non-repudiation principle of computer security. Also, the potentially hackers may launch attacks such as DDoS or identity theft behind Tor. For this reason, there are needed new systems and models to detect or identify the bad behavior users in Tor networks. In this paper, we present the application of Neural Networks (NNs) for user identification in Tor networks. We used the Back-propagation NN and constructed a Tor server, a Deep Web browser (Tor client) and a Surface Web browser. Then, the client sends the data browsing to the Tor server using the Tor network. We used Wireshark Network Analyzer to get the data and then used the Back-propagation NN to make the approximation. For evaluation we considered Number of Packets (NoP) metric and activation function. We present many simulation results considering Tor client. We analyze the data using Friedman test. From the results, we see that by using softplus activation function the system can identify Tor client.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的Tor网络用户识别:基于Friedman检验的激活函数比较分析
由于Tor基础设施为用户提供的匿名性,Tor已成为恶意用户的有用工具。使用Tor,用户可以违背计算机安全的不可否认原则。此外,潜在的黑客可能会在Tor背后发起DDoS或身份盗窃等攻击。因此,需要新的系统和模型来检测或识别Tor网络中的不良行为用户。本文介绍了神经网络在Tor网络中用户识别的应用。我们使用反向传播神经网络,构建了一个Tor服务器、一个深层网络浏览器(Tor客户端)和一个表面网络浏览器。然后,客户端通过Tor网络将数据浏览发送给Tor服务器。我们使用Wireshark网络分析器获取数据,然后使用反向传播神经网络进行近似。为了评估,我们考虑了数据包数(NoP)度量和激活函数。我们给出了许多考虑Tor客户端的仿真结果。我们使用Friedman检验对数据进行分析。结果表明,利用softplus激活函数,系统可以识别Tor客户端。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Model Generation of Cattle by Shape-from-Silhouette Method for ICT Agriculture Improvement of Mesh Free Deforming Analysis for Maxillofacial Palpation on a Virtual Training System A Proposal of Coding Rule Learning Function in Java Programming Learning Assistant System 3D Model Data Retrieval System Using KAZE Feature for Accepting 2D Image as Query Flexible Screen Sharing System between PC and Tablet for Collaborative Activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1