Speech recognition HMM training on reconfigurable parallel processor

HyunJeong Yun, Aaron Smith, H. Silverman
{"title":"Speech recognition HMM training on reconfigurable parallel processor","authors":"HyunJeong Yun, Aaron Smith, H. Silverman","doi":"10.1109/FPGA.1997.624627","DOIUrl":null,"url":null,"abstract":"Armstrong III is a 20 node multi-computer that is currently operational. In addition to a RISC processor, each node contains reconfigurable resources implemented with FPGAs. The in-circuit reprogramability of static RAM based FPGAs allows the computational capabilities of a node to be dynamically matched to the computational requirements of an application. Most reconfigurable computers in existence today rely solely on a large number of FPGAs to perform computations. In contrast, the paper demonstrates the utility of a small number of FPGAs coupled to a RISC processor with a simple interconnect. The article describes a substantive example application that performs HMM training for speech recognition with the reconfigurable platform.","PeriodicalId":303064,"journal":{"name":"Proceedings. The 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines Cat. No.97TB100186)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines Cat. No.97TB100186)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPGA.1997.624627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Armstrong III is a 20 node multi-computer that is currently operational. In addition to a RISC processor, each node contains reconfigurable resources implemented with FPGAs. The in-circuit reprogramability of static RAM based FPGAs allows the computational capabilities of a node to be dynamically matched to the computational requirements of an application. Most reconfigurable computers in existence today rely solely on a large number of FPGAs to perform computations. In contrast, the paper demonstrates the utility of a small number of FPGAs coupled to a RISC processor with a simple interconnect. The article describes a substantive example application that performs HMM training for speech recognition with the reconfigurable platform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可重构并行处理器的语音识别HMM训练
阿姆斯特朗三号是一台20节点的多计算机,目前正在运行。除了RISC处理器之外,每个节点还包含用fpga实现的可重构资源。基于静态RAM的fpga的电路可重编程性允许节点的计算能力动态匹配应用程序的计算需求。目前存在的大多数可重构计算机仅依靠大量的fpga来执行计算。相比之下,本文展示了通过简单的互连将少量fpga耦合到RISC处理器的实用性。本文描述了一个实质性的示例应用程序,该应用程序使用可重构平台为语音识别执行HMM训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increased FPGA capacity enables scalable, flexible CCMs: an example from image processing Fault simulation on reconfigurable hardware Computing kernels implemented with a wormhole RTR CCM Datapath-oriented FPGA mapping and placement for configurable computing A dynamic reconfiguration run-time system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1