A Dilated Residual Hierarchically Fashioned Segmentation Framework for Extracting Gleason Tissues and Grading Prostate Cancer from Whole Slide Images

Taimur Hassan, Bilal Hassan, A. El-Baz, N. Werghi
{"title":"A Dilated Residual Hierarchically Fashioned Segmentation Framework for Extracting Gleason Tissues and Grading Prostate Cancer from Whole Slide Images","authors":"Taimur Hassan, Bilal Hassan, A. El-Baz, N. Werghi","doi":"10.1109/SAS51076.2021.9530155","DOIUrl":null,"url":null,"abstract":"Prostate cancer (PCa) is the second deadliest form of cancer in males, and it can be clinically graded by examining the structural representations of Gleason tissues. This paper proposes a new method for segmenting the Gleason tissues (patch-wise) in order to grade PCa from the whole slide images (WSI). Also, the proposed approach encompasses two main contributions: 1) A synergy of hybrid dilation factors and hierarchical decomposition of latent space representation for effective Gleason tissues extraction, and 2) A three-tiered loss function which can penalize different semantic segmentation models for accurately extracting the highly correlated patterns. In addition to this, the proposed framework has been extensively evaluated on a large-scale PCa dataset containing 10,516 whole slide scans (with around 71.7M patches), where it outperforms state-of-the-art schemes by 3.22% (in terms of mean intersection-over-union) for extracting the Gleason tissues and 6.91 % (in terms of F1 score) for grading the progression of PCa.","PeriodicalId":224327,"journal":{"name":"2021 IEEE Sensors Applications Symposium (SAS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS51076.2021.9530155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Prostate cancer (PCa) is the second deadliest form of cancer in males, and it can be clinically graded by examining the structural representations of Gleason tissues. This paper proposes a new method for segmenting the Gleason tissues (patch-wise) in order to grade PCa from the whole slide images (WSI). Also, the proposed approach encompasses two main contributions: 1) A synergy of hybrid dilation factors and hierarchical decomposition of latent space representation for effective Gleason tissues extraction, and 2) A three-tiered loss function which can penalize different semantic segmentation models for accurately extracting the highly correlated patterns. In addition to this, the proposed framework has been extensively evaluated on a large-scale PCa dataset containing 10,516 whole slide scans (with around 71.7M patches), where it outperforms state-of-the-art schemes by 3.22% (in terms of mean intersection-over-union) for extracting the Gleason tissues and 6.91 % (in terms of F1 score) for grading the progression of PCa.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从整张幻灯片图像中提取Gleason组织和前列腺癌分级的扩展残差分层分割框架
前列腺癌(PCa)是男性中第二致命的癌症,它可以通过检查格里森组织的结构表征来进行临床分级。本文提出了一种新的Gleason组织分割方法(逐块分割),以便从整个幻灯片图像(WSI)中对PCa进行分级。此外,该方法还包括两个主要贡献:1)混合扩张因子和潜在空间表示分层分解的协同作用,用于有效提取Gleason组织;2)三层损失函数,可以惩罚不同的语义分割模型,以准确提取高度相关的模式。除此之外,所提出的框架已在包含10,516个完整切片扫描(约71.7M补丁)的大规模PCa数据集上进行了广泛评估,在提取Gleason组织方面,它比最先进的方案高出3.22%(就平均相交-过联合而言),在PCa的进展分级方面,它比最先进的方案高出6.91%(就F1分数而言)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quasi-Static Magnetic Localization of Capsule Endoscopes with an Active Integrated Coil Comparing BLE and NB-IoT as Communication Options for Smart Viticulture IoT Applications Self-Compensation of Cross Influences using Spectral Transmission Ratios for Optical Fiber Sensors in Lithium-Ion Batteries Polycrystalline silicon photovoltaic harvesting for indoor IoT systems under red- far red artificial light SCPI: IoT and the Déjà Vu of Instrument Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1