Leveraging Clinical BERT in Multimodal Mortality Prediction Models for COVID-19

Yashodip R. Pawar, Aron Henriksson, Pontus Hedberg, P. Nauclér
{"title":"Leveraging Clinical BERT in Multimodal Mortality Prediction Models for COVID-19","authors":"Yashodip R. Pawar, Aron Henriksson, Pontus Hedberg, P. Nauclér","doi":"10.1109/CBMS55023.2022.00042","DOIUrl":null,"url":null,"abstract":"Clinical prediction models are often based solely on the use of structured data in electronic health records, e.g. vital parameters and laboratory results, effectively ignoring potentially valuable information recorded in other modalities, such as free-text clinical notes. Here, we report on the development of a multimodal model that combines structured and unstructured data. In particular, we study how best to make use of a clinical language model in a multimodal setup for predicting 30-day all-cause mortality upon hospital admission in patients with COVID-19. We evaluate three strategies for incorporating a domain-specific clinical BERT model in multimodal prediction systems: (i) without fine-tuning, (ii) with unimodal fine-tuning, and (iii) with multimodal fine-tuning. The best-performing model leverages multimodal fine-tuning, in which the clinical BERT model is updated based also on the structured data. This multimodal mortality prediction model is shown to outperform unimodal models that are based on using either only structured data or only unstructured data. The experimental results indicate that clinical prediction models can be improved by including data in other modalities and that multimodal fine-tuning of a clinical language model is an effective strategy for incorporating information from clinical notes in multimodal prediction systems.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Clinical prediction models are often based solely on the use of structured data in electronic health records, e.g. vital parameters and laboratory results, effectively ignoring potentially valuable information recorded in other modalities, such as free-text clinical notes. Here, we report on the development of a multimodal model that combines structured and unstructured data. In particular, we study how best to make use of a clinical language model in a multimodal setup for predicting 30-day all-cause mortality upon hospital admission in patients with COVID-19. We evaluate three strategies for incorporating a domain-specific clinical BERT model in multimodal prediction systems: (i) without fine-tuning, (ii) with unimodal fine-tuning, and (iii) with multimodal fine-tuning. The best-performing model leverages multimodal fine-tuning, in which the clinical BERT model is updated based also on the structured data. This multimodal mortality prediction model is shown to outperform unimodal models that are based on using either only structured data or only unstructured data. The experimental results indicate that clinical prediction models can be improved by including data in other modalities and that multimodal fine-tuning of a clinical language model is an effective strategy for incorporating information from clinical notes in multimodal prediction systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用临床BERT在COVID-19多模式死亡率预测模型中的应用
临床预测模型往往仅仅基于电子健康记录中结构化数据的使用,例如重要参数和实验室结果,有效地忽略了以其他方式记录的潜在有价值的信息,例如自由文本临床说明。在这里,我们报告了结合结构化和非结构化数据的多模态模型的开发。特别是,我们研究了如何在多模式设置中最好地利用临床语言模型来预测COVID-19患者入院后30天的全因死亡率。我们评估了在多模态预测系统中纳入特定领域的临床BERT模型的三种策略:(i)无微调,(ii)单模态微调,(iii)多模态微调。表现最好的模型利用多模态微调,其中临床BERT模型也基于结构化数据更新。这种多模态死亡率预测模型被证明优于仅使用结构化数据或仅使用非结构化数据的单模态模型。实验结果表明,临床预测模型可以通过加入其他模式的数据来改进,并且临床语言模型的多模式微调是将临床笔记信息纳入多模式预测系统的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrasonic Carotid Blood Flow Velocimetry Based on Deep Complex Neural Network Graph-based Regional Feature Enhancing for Abdominal Multi-Organ Segmentation in CT Exploiting AI to make insulin pens smart: injection site recognition and lipodystrophy detection Subgroup Discovery Analysis of Treatment Patterns in Lung Cancer Patients Estimating Predictive Uncertainty in Gastrointestinal Polyp Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1