Response Surfaces of Neural Networks Learned Using Bayesian Framework and Its Application to Optimization Problem

N. Takeda
{"title":"Response Surfaces of Neural Networks Learned Using Bayesian Framework and Its Application to Optimization Problem","authors":"N. Takeda","doi":"10.1299/JCST.3.315","DOIUrl":null,"url":null,"abstract":"We verified the generalization ability of the response surfaces of artificial neural networks (NNs), and that the surfaces could be applied to an engineering-design problem. A Bayesian framework to regularize NNs, which was proposed by Gull and Skilling, can be used to generate NN response surfaces with excellent generalization ability, i.e., to determine the regularizing constants in an objective function minimized during NN learning. This well-generalized NN might be useful to find an optimal solution in the process of response surface methodology (RSM). We, therefore, describe three rules based on the Bayesian framework to update the regularizing constants, utilizing these rules to generate NN response surfaces with noisy teacher data drawn from a typical unimodal or multimodal function. Good generalization ability was achieved with regularized NN response surfaces, even though an update rule including trace evaluation failed to determine the regularizing constants regardless of the response function. We, next, selected the most appropriate update rule, which included eigenvalue evaluation, and then the NN response surface regularized using the update rule was applied to finding the optimal solution to an illustrative engineering-design problem. The NN response surface did not fit the noise in the teacher data, and consequently, it could effectively be used to achieve a satisfactory solution. This may increase the opportunities for using NN in the process of RSM.","PeriodicalId":196913,"journal":{"name":"Journal of Computational Science and Technology","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JCST.3.315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We verified the generalization ability of the response surfaces of artificial neural networks (NNs), and that the surfaces could be applied to an engineering-design problem. A Bayesian framework to regularize NNs, which was proposed by Gull and Skilling, can be used to generate NN response surfaces with excellent generalization ability, i.e., to determine the regularizing constants in an objective function minimized during NN learning. This well-generalized NN might be useful to find an optimal solution in the process of response surface methodology (RSM). We, therefore, describe three rules based on the Bayesian framework to update the regularizing constants, utilizing these rules to generate NN response surfaces with noisy teacher data drawn from a typical unimodal or multimodal function. Good generalization ability was achieved with regularized NN response surfaces, even though an update rule including trace evaluation failed to determine the regularizing constants regardless of the response function. We, next, selected the most appropriate update rule, which included eigenvalue evaluation, and then the NN response surface regularized using the update rule was applied to finding the optimal solution to an illustrative engineering-design problem. The NN response surface did not fit the noise in the teacher data, and consequently, it could effectively be used to achieve a satisfactory solution. This may increase the opportunities for using NN in the process of RSM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用贝叶斯框架学习神经网络的响应面及其在优化问题中的应用
我们验证了人工神经网络响应面的泛化能力,并且可以应用于工程设计问题。Gull和Skilling提出的正则化神经网络的贝叶斯框架可以生成具有优秀泛化能力的神经网络响应面,即在神经网络学习过程中确定最小化目标函数的正则化常数。这种泛化良好的神经网络可用于在响应面法(RSM)过程中寻找最优解。因此,我们描述了基于贝叶斯框架的三个规则来更新正则化常数,利用这些规则生成具有从典型单峰或多峰函数提取的带噪声教师数据的NN响应面。正则化神经网络响应面具有良好的泛化能力,尽管包含迹值计算的更新规则在不考虑响应函数的情况下无法确定正则化常数。然后,我们选择最合适的更新规则,其中包括特征值评估,然后应用更新规则正则化的神经网络响应面来寻找说明性工程设计问题的最优解。神经网络响应面不能拟合教师数据中的噪声,因此可以有效地使用它来获得满意的解。这可能会增加在RSM过程中使用神经网络的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Optimization of a Gas Burner for TPV Application Experimental and Numerical Approaches for Reliability Evaluation of Electronic Packaging Two-Layer Viscous Shallow-Water Equations and Conservation Laws Lattice Boltzmann Simulation of Two-Phase Viscoelastic Fluid Flows An Inexact Balancing Preconditioner for Large-Scale Structural Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1