A Robust, Iteration Dependent Variable Step-Size (RID-VSS) Least-Mean Square (LMS) Adaptive Algorithm

U. Mansoor, S. M. Asad
{"title":"A Robust, Iteration Dependent Variable Step-Size (RID-VSS) Least-Mean Square (LMS) Adaptive Algorithm","authors":"U. Mansoor, S. M. Asad","doi":"10.1109/ICEET48479.2020.9048197","DOIUrl":null,"url":null,"abstract":"A robust variable step-size LMS algorithm is proposed. The variable step-size is a weighted running average of the squared error signal which varies as the square of the estimated error changes. The weighting factor ensures stability and convergence. Robustness of the algorithm is achieved through the step-size inherent bounded nature and independence from the initial condition. The algorithm is compared with two benchmark VSS algorithms. Convergence and steady-state behavior of the proposed adaptive filter are analyzed. Simulation for the system identification scenario is carried out and the performance of the proposed algorithm is compared.","PeriodicalId":144846,"journal":{"name":"2020 International Conference on Engineering and Emerging Technologies (ICEET)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Engineering and Emerging Technologies (ICEET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEET48479.2020.9048197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A robust variable step-size LMS algorithm is proposed. The variable step-size is a weighted running average of the squared error signal which varies as the square of the estimated error changes. The weighting factor ensures stability and convergence. Robustness of the algorithm is achieved through the step-size inherent bounded nature and independence from the initial condition. The algorithm is compared with two benchmark VSS algorithms. Convergence and steady-state behavior of the proposed adaptive filter are analyzed. Simulation for the system identification scenario is carried out and the performance of the proposed algorithm is compared.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种鲁棒、迭代相关变步长(RID-VSS)最小均方(LMS)自适应算法
提出了一种鲁棒变步长LMS算法。可变步长是误差平方信号的加权运行平均值,它随估计误差的平方变化而变化。加权因子保证了稳定性和收敛性。该算法的鲁棒性是通过步长固有的有界性和与初始条件的独立性来实现的。将该算法与两种基准VSS算法进行了比较。分析了该自适应滤波器的收敛性和稳态特性。对系统辨识场景进行了仿真,并对所提算法的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Friendship Selection Mechanism for an Individual’s Small World in Social Internet of Things ICEET 2020 Author Index Design and Comparative Analysis of 2.45 GHz Rectangular microstrip Patch Antenna A Study on Device Automation: An Integration of Internet protocols and Embedded System ICEET 2020 Foreword
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1