Effect of ZnO nanowire synthesis time on dye-sensitized solar cells

Bo Chen, Hsueh-Tao Chou, Ho-Chun Hsu
{"title":"Effect of ZnO nanowire synthesis time on dye-sensitized solar cells","authors":"Bo Chen, Hsueh-Tao Chou, Ho-Chun Hsu","doi":"10.1109/NANO.2013.6720991","DOIUrl":null,"url":null,"abstract":"In the study, ZnO nanowires were synthesized by chemical bath deposition (CBD). We have synthesized the ZnO nanowires with various growth time and use the ZnO films as the photoelectrodes of DSSCs. In our experiment, the seeded solution was prepared by zinc acetate and NaOH. And the precursor of CBD method solution was made by zinc nitrate and HMTA for ZnO nanowires growing. We demonstrated the fabrications and properties of the ZnO nanowires using SEM and also investigated the performance of the dye-sensitized solar cellsl byusing the solar cell measurement system (a Keithley 2400 digital source meter) at one sun (A.M. 1.5G, 100mW/cm2) illumination. We observed that the aspect ratio of the ZnO nanowires become longer with a longer growing time (3hr, 6hr, 12hr, and 24hr). And the highest aspect ratios was 23.97. The performance of the DSSC shows that the cell which grew in 6H (Voc=0.4V, Isc=1.11mA, η=0.17%) was the optimum result.","PeriodicalId":189707,"journal":{"name":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2013.6720991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the study, ZnO nanowires were synthesized by chemical bath deposition (CBD). We have synthesized the ZnO nanowires with various growth time and use the ZnO films as the photoelectrodes of DSSCs. In our experiment, the seeded solution was prepared by zinc acetate and NaOH. And the precursor of CBD method solution was made by zinc nitrate and HMTA for ZnO nanowires growing. We demonstrated the fabrications and properties of the ZnO nanowires using SEM and also investigated the performance of the dye-sensitized solar cellsl byusing the solar cell measurement system (a Keithley 2400 digital source meter) at one sun (A.M. 1.5G, 100mW/cm2) illumination. We observed that the aspect ratio of the ZnO nanowires become longer with a longer growing time (3hr, 6hr, 12hr, and 24hr). And the highest aspect ratios was 23.97. The performance of the DSSC shows that the cell which grew in 6H (Voc=0.4V, Isc=1.11mA, η=0.17%) was the optimum result.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ZnO纳米线合成时间对染料敏化太阳能电池的影响
本研究采用化学浴沉积法(CBD)合成ZnO纳米线。我们合成了不同生长时间的ZnO纳米线,并将其用作DSSCs的光电极。在我们的实验中,用乙酸锌和NaOH制备种子溶液。并以硝酸锌和HMTA为原料制备了CBD法溶液的前驱体,用于ZnO纳米线的生长。我们利用扫描电镜展示了ZnO纳米线的制备和性能,并利用太阳能电池测量系统(Keithley 2400数字源计)在一个太阳(A.M. 1.5G, 100mW/cm2)照明下研究了染料敏化太阳能电池的性能。我们观察到ZnO纳米线的长宽比随着生长时间的延长(3hr, 6hr, 12hr和24hr)而变长。纵横比最高为23.97。DSSC的性能表明,在6H (Voc=0.4V, Isc=1.11mA, η=0.17%)生长的电池是最佳的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of quantum well thermoelectric energy harvester by CMOS process ESD protection design for radio-frequency integrated circuits in nanoscale CMOS technology Optical manipulation of biological cell without measurement of cell velocity A bottom-up engineered broadband optical nanoabsorber for radiometry and energy and harnessing applications Fabrication of multilayered tube-shaped microstructures embedding cells inside microfluidic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1