Cataract Detection using Hybrid CNN Model on Retinal Fundus Images

Van-Viet Nguyen, Chun-Ling Lin
{"title":"Cataract Detection using Hybrid CNN Model on Retinal Fundus Images","authors":"Van-Viet Nguyen, Chun-Ling Lin","doi":"10.1109/ICASI57738.2023.10179523","DOIUrl":null,"url":null,"abstract":"In this research, a hybrid convolutional neuron network (CNN) model was developed for cataract detection. The full fundus image in the original dataset will be divided into four segments that created five fundus image datasets and trained by five different CNN models which have the same structure. The five model predictions will pass through majority voting to get the final prediction. The experimental result shows that the proposed hybrid CNN performs better than stand-alone models.","PeriodicalId":281254,"journal":{"name":"2023 9th International Conference on Applied System Innovation (ICASI)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Applied System Innovation (ICASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASI57738.2023.10179523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, a hybrid convolutional neuron network (CNN) model was developed for cataract detection. The full fundus image in the original dataset will be divided into four segments that created five fundus image datasets and trained by five different CNN models which have the same structure. The five model predictions will pass through majority voting to get the final prediction. The experimental result shows that the proposed hybrid CNN performs better than stand-alone models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合CNN模型的视网膜眼底图像白内障检测
本研究建立了一种用于白内障检测的混合卷积神经元网络(CNN)模型。将原始数据集中的完整眼底图像分成4个片段,创建5个眼底图像数据集,分别使用5个结构相同的不同CNN模型进行训练。五个模型预测将通过多数投票获得最终预测。实验结果表明,本文提出的混合CNN比单机模型具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Detection of Disinformation Based on Chronological and Spatial Topologies Cluster based Indexing for Spatial Analysis on Read-only Database Straight-line Generation Approach using Deep Learning for Mobile Robot Guidance in Lettuce Fields Leveraging the Objective Intelligibility and Noise Estimation to Improve Conformer-Based MetricGAN Analysis of Eye-tracking System Based on Diffractive Waveguide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1