Alberto Muñoz-Ortiz, Michalina Strzyz, David Vilares
{"title":"Not All Linearizations Are Equally Data-Hungry in Sequence Labeling Parsing","authors":"Alberto Muñoz-Ortiz, Michalina Strzyz, David Vilares","doi":"10.26615/978-954-452-072-4_111","DOIUrl":null,"url":null,"abstract":"Different linearizations have been proposed to cast dependency parsing as sequence labeling and solve the task as: (i) a head selection problem, (ii) finding a representation of the token arcs as bracket strings, or (iii) associating partial transition sequences of a transition-based parser to words. Yet, there is little understanding about how these linearizations behave in low-resource setups. Here, we first study their data efficiency, simulating data-restricted setups from a diverse set of rich-resource treebanks. Second, we test whether such differences manifest in truly low-resource setups. The results show that head selection encodings are more data-efficient and perform better in an ideal (gold) framework, but that such advantage greatly vanishes in favour of bracketing formats when the running setup resembles a real-world low-resource configuration.","PeriodicalId":284493,"journal":{"name":"Recent Advances in Natural Language Processing","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-072-4_111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Different linearizations have been proposed to cast dependency parsing as sequence labeling and solve the task as: (i) a head selection problem, (ii) finding a representation of the token arcs as bracket strings, or (iii) associating partial transition sequences of a transition-based parser to words. Yet, there is little understanding about how these linearizations behave in low-resource setups. Here, we first study their data efficiency, simulating data-restricted setups from a diverse set of rich-resource treebanks. Second, we test whether such differences manifest in truly low-resource setups. The results show that head selection encodings are more data-efficient and perform better in an ideal (gold) framework, but that such advantage greatly vanishes in favour of bracketing formats when the running setup resembles a real-world low-resource configuration.