A Comparison of HOG-SVM and SIFT-SVM Techniques for Identifying Brown Planthoppers in Rice Fields

Christopher G. Harris, I. Andika, Y. Trisyono
{"title":"A Comparison of HOG-SVM and SIFT-SVM Techniques for Identifying Brown Planthoppers in Rice Fields","authors":"Christopher G. Harris, I. Andika, Y. Trisyono","doi":"10.1109/CITDS54976.2022.9914061","DOIUrl":null,"url":null,"abstract":"Brown planthoppers (BPH) are insect pests that cause significant damage to rice crop yields throughout the Asia-Pacific region. Early identification of BPH forms has ramifications for forecasting potential outbreaks. To address this, we use Adaboost and Haar features to discover areas of interest in images of rice plants. We apply two separate techniques to identify the BPH in images: we compare a technique that utilizes HOG descriptors and another that utilizes SIFT feature descriptors. To each of these techniques, we apply a Support Vector Machine (SVM) to allow us to classify areas of interest in the images. Our approach achieves a weighted average classification rate of 95.38% for HOG and 96.38% for SIFT, improving upon state-of-the-art BPH detection methods and our findings lay the groundwork for other insect pest identification and detection efforts.","PeriodicalId":271992,"journal":{"name":"2022 IEEE 2nd Conference on Information Technology and Data Science (CITDS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd Conference on Information Technology and Data Science (CITDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITDS54976.2022.9914061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brown planthoppers (BPH) are insect pests that cause significant damage to rice crop yields throughout the Asia-Pacific region. Early identification of BPH forms has ramifications for forecasting potential outbreaks. To address this, we use Adaboost and Haar features to discover areas of interest in images of rice plants. We apply two separate techniques to identify the BPH in images: we compare a technique that utilizes HOG descriptors and another that utilizes SIFT feature descriptors. To each of these techniques, we apply a Support Vector Machine (SVM) to allow us to classify areas of interest in the images. Our approach achieves a weighted average classification rate of 95.38% for HOG and 96.38% for SIFT, improving upon state-of-the-art BPH detection methods and our findings lay the groundwork for other insect pest identification and detection efforts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HOG-SVM与SIFT-SVM技术在稻田褐飞虱识别中的比较
褐飞虱(BPH)是对整个亚太地区水稻作物产量造成重大损害的害虫。BPH形式的早期识别对预测潜在的爆发具有影响。为了解决这个问题,我们使用Adaboost和Haar功能来发现水稻植物图像中感兴趣的区域。我们应用两种不同的技术来识别图像中的BPH:我们比较了利用HOG描述符的技术和利用SIFT特征描述符的技术。对于每一种技术,我们应用支持向量机(SVM)来对图像中感兴趣的区域进行分类。该方法的加权平均分类率为95.38%,SIFT的加权平均分类率为96.38%,对现有的BPH检测方法进行了改进,为其他害虫的鉴定和检测工作奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of a typical cell in the uplink cellular network model using stochastic simulation Image sensor based steering signal for a digital actuator system Clustering-based customer representation learning from dynamic transactional data Joint Transmission Coordinated Multipoint on Mobile Users in 5G Heterogeneous Network Smart watch activity recognition using plot image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1