Bram Veraverbeke, Tim Thielemans, Tuur Van Daele, F. Tavernier
{"title":"A 240V to 47.5 V Fully Integrated Switched-Capacitor Converter in GaN Achieving 62.6% Efficiency at 220 mW/mm2","authors":"Bram Veraverbeke, Tim Thielemans, Tuur Van Daele, F. Tavernier","doi":"10.1109/prime55000.2022.9816779","DOIUrl":null,"url":null,"abstract":"This paper presents a fully integrated high-voltage switched-capacitor DC-DC converter in a GaN-on-SOI process. This technology offers high-quality GaN HEMTs with a higher breakdown voltage and lower parasitic capacitances for the same on-resistance as conventional silicon transistors. The presented series-parallel converter integrates the whole converter on a single GaN-die, including the power switches, the gate drivers, and the capacitors. Simulations show an efficiency of 62.6% at a power density of 220 mW/m$\\text{m}^{2}$ while converting a 240 V input voltage into an output voltage of 47.5 V. To the author’s knowledge, the proposed converter is the first fully integrated DC-DC converter in GaN. Additionally, it has a 3x higher power density and a higher efficiency compared to previously reported monolithic high-voltage converters.","PeriodicalId":142196,"journal":{"name":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prime55000.2022.9816779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a fully integrated high-voltage switched-capacitor DC-DC converter in a GaN-on-SOI process. This technology offers high-quality GaN HEMTs with a higher breakdown voltage and lower parasitic capacitances for the same on-resistance as conventional silicon transistors. The presented series-parallel converter integrates the whole converter on a single GaN-die, including the power switches, the gate drivers, and the capacitors. Simulations show an efficiency of 62.6% at a power density of 220 mW/m$\text{m}^{2}$ while converting a 240 V input voltage into an output voltage of 47.5 V. To the author’s knowledge, the proposed converter is the first fully integrated DC-DC converter in GaN. Additionally, it has a 3x higher power density and a higher efficiency compared to previously reported monolithic high-voltage converters.