Phonetic name matching for cross-lingual Spoken Sentence Retrieval

Heng Ji, R. Grishman, Wen Wang
{"title":"Phonetic name matching for cross-lingual Spoken Sentence Retrieval","authors":"Heng Ji, R. Grishman, Wen Wang","doi":"10.1109/SLT.2008.4777895","DOIUrl":null,"url":null,"abstract":"Cross-lingual spoken sentence retrieval (CLSSR) remains a challenge, especially for queries including OOV words such as person names. This paper proposes a simple method of fuzzy matching between query names and phones of candidate audio segments. This approach has the advantage of avoiding some word decoding errors in automatic speech recognition (ASR). Experiments on Mandarin-English CLSSR show that phone-based searching and conventional translation-based searching are complementary. Adding phone matching achieved 26.29% improvement on F-measure over searching on state-of-the-art machine translation (MT) output and 8.83% over entity translation (ET) output.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Cross-lingual spoken sentence retrieval (CLSSR) remains a challenge, especially for queries including OOV words such as person names. This paper proposes a simple method of fuzzy matching between query names and phones of candidate audio segments. This approach has the advantage of avoiding some word decoding errors in automatic speech recognition (ASR). Experiments on Mandarin-English CLSSR show that phone-based searching and conventional translation-based searching are complementary. Adding phone matching achieved 26.29% improvement on F-measure over searching on state-of-the-art machine translation (MT) output and 8.83% over entity translation (ET) output.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨语言口语句子检索的语音名称匹配
跨语言口语句子检索(CLSSR)仍然是一个挑战,特别是对于包含OOV词(如人名)的查询。本文提出了一种简单的候选音频片段查询名称与电话的模糊匹配方法。这种方法的优点是避免了自动语音识别(ASR)中的一些字解码错误。中英CLSSR实验表明,基于手机的搜索与传统的基于翻译的搜索是互补的。在最先进的机器翻译(MT)输出和实体翻译(ET)输出上,添加电话匹配的F-measure比搜索提高了26.29%和8.83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
“Who is this” quiz dialogue system and users' evaluation Latent dirichlet language model for speech recognition Modelling user behaviour in the HIS-POMDP dialogue manager A syntactic language model based on incremental CCG parsing Improving word segmentation for Thai speech translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1