Volumetric high dynamic range windowing for better data representation

D. Bartz, Benjamin Schnaidt, Jirko Cernik, L. Gauckler, J. Fischer, Á. Río
{"title":"Volumetric high dynamic range windowing for better data representation","authors":"D. Bartz, Benjamin Schnaidt, Jirko Cernik, L. Gauckler, J. Fischer, Á. Río","doi":"10.1145/1108590.1108612","DOIUrl":null,"url":null,"abstract":"Volume data is usually generated by measuring devices (eg. CT scanners, MRI scanners), mathematical functions (eg., Marschner/Lobb function), or by simulations. While all these sources typically generate 12 bit integer or floating point representations, commonly used displays are only capable of handling 8 bit gray or color levels. In a typical medical scenario, a 3D scanner will generate a 12 bit dataset, from which a subrange of the active full accuracy data range of 0 up to 4096 voxel values will be downsampled to an 8 bit per-voxel accuracy. This downsampling is usually achieved by a linear mapping operation and by clipping of value ranges left and right of the chosen subrange.In this paper, we propose a novel windowing operation that is based on methods from high dynamic range image mapping. With this method, the contrast of mapped 8 bit volume datasets is significantly enhanced, in particular if the imaging modality allows for a high tissue differentiation (eg., MRI). Thus, it also allows better and easier segmentation and classification. We demonstrate the improved contrast with different error metrics and a perception-driven image difference to indicate differences between three different high dynamic range operators.","PeriodicalId":325699,"journal":{"name":"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1108590.1108612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Volume data is usually generated by measuring devices (eg. CT scanners, MRI scanners), mathematical functions (eg., Marschner/Lobb function), or by simulations. While all these sources typically generate 12 bit integer or floating point representations, commonly used displays are only capable of handling 8 bit gray or color levels. In a typical medical scenario, a 3D scanner will generate a 12 bit dataset, from which a subrange of the active full accuracy data range of 0 up to 4096 voxel values will be downsampled to an 8 bit per-voxel accuracy. This downsampling is usually achieved by a linear mapping operation and by clipping of value ranges left and right of the chosen subrange.In this paper, we propose a novel windowing operation that is based on methods from high dynamic range image mapping. With this method, the contrast of mapped 8 bit volume datasets is significantly enhanced, in particular if the imaging modality allows for a high tissue differentiation (eg., MRI). Thus, it also allows better and easier segmentation and classification. We demonstrate the improved contrast with different error metrics and a perception-driven image difference to indicate differences between three different high dynamic range operators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体积高动态范围窗口更好的数据表示
体积数据通常由测量设备(如:CT扫描仪,核磁共振扫描仪),数学函数(如:(Marschner/Lobb函数),或通过模拟。虽然所有这些源通常生成12位整数或浮点表示,但常用的显示器只能处理8位灰度或颜色级别。在典型的医疗场景中,3D扫描仪将生成一个12位的数据集,从0到4096体素值的活动全精度数据范围的一个子范围将被下采样到每体素8位的精度。这种下采样通常是通过线性映射操作和对所选子范围的左右值范围进行裁剪来实现的。在本文中,我们提出了一种基于高动态范围图像映射方法的窗口操作。使用这种方法,映射的8位体积数据集的对比度显着增强,特别是如果成像方式允许高度组织分化(例如:MRI)。因此,它也允许更好和更容易的分割和分类。我们用不同的误差度量和感知驱动的图像差异演示了改进的对比度,以表明三种不同的高动态范围算子之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Progressive RBF interpolation Automatic addition of physics components to procedural content Out-of-core real-time visualization of massive 3D point clouds Implementation of the Lucas-Kanade image registration algorithm on a GPU for 3D computational platform stabilisation Adaptive LOD editing of quad meshes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1