Lu Feng, Clemens Wiltsche, Laura R. Humphrey, U. Topcu
{"title":"Controller synthesis for autonomous systems interacting with human operators","authors":"Lu Feng, Clemens Wiltsche, Laura R. Humphrey, U. Topcu","doi":"10.1145/2735960.2735973","DOIUrl":null,"url":null,"abstract":"We propose an approach to synthesize control protocols for autonomous systems that account for uncertainties and imperfections in interactions with human operators. As an illustrative example, we consider a scenario involving road network surveillance by an unmanned aerial vehicle (UAV) that is controlled remotely by a human operator but also has a certain degree of autonomy. Depending on the type (i.e., probabilistic and/or nondeterministic) of knowledge about the uncertainties and imperfections in the operator-autonomy interactions, we use abstractions based on Markov decision processes and augment these models to stochastic two-player games. Our approach enables the synthesis of operator-dependent optimal mission plans for the UAV, highlighting the effects of operator characteristics (e.g., workload, proficiency, and fatigue) on UAV mission performance; it can also provide informative feedback (e.g., Pareto curves showing the trade-offs between multiple mission objectives), potentially assisting the operator in decision-making.","PeriodicalId":344612,"journal":{"name":"Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2735960.2735973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47
Abstract
We propose an approach to synthesize control protocols for autonomous systems that account for uncertainties and imperfections in interactions with human operators. As an illustrative example, we consider a scenario involving road network surveillance by an unmanned aerial vehicle (UAV) that is controlled remotely by a human operator but also has a certain degree of autonomy. Depending on the type (i.e., probabilistic and/or nondeterministic) of knowledge about the uncertainties and imperfections in the operator-autonomy interactions, we use abstractions based on Markov decision processes and augment these models to stochastic two-player games. Our approach enables the synthesis of operator-dependent optimal mission plans for the UAV, highlighting the effects of operator characteristics (e.g., workload, proficiency, and fatigue) on UAV mission performance; it can also provide informative feedback (e.g., Pareto curves showing the trade-offs between multiple mission objectives), potentially assisting the operator in decision-making.