Machine learning based Quality of Experience (QoE) Prediction Approach in Enterprise Multimedia Networks

H. O. Hamidou, Justin P. Kouraogo, Oumarou Sié, David Tapsoba
{"title":"Machine learning based Quality of Experience (QoE) Prediction Approach in Enterprise Multimedia Networks","authors":"H. O. Hamidou, Justin P. Kouraogo, Oumarou Sié, David Tapsoba","doi":"10.4108/eai.24-11-2022.2329806","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss quality of experience in multimedia networks. We present an architecture and a survey of machine learning methods to predict the quality of experience in an enterprise multimedia network environment. Our approach is based on subjective methods. It consists of the use PRTG (Paessler Router Traffic Grapher) for QoS (quality of service) data collection and Google Forms for the different users of the network MOS (Minimum Score Opinion) parameters collection. We then implement different supervised machine learning schemes using the data collected, and finally analyze their performance. We compare two classes of algorithms namely regression algorithms and classification algorithms. The Random Forest Classifier in the second class algorithm give the best results.","PeriodicalId":152951,"journal":{"name":"Proceedings of the 5th edition of the Computer Science Research Days, JRI 2022, 24-26 November 2022, Ouagadougou, Burkina Faso","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th edition of the Computer Science Research Days, JRI 2022, 24-26 November 2022, Ouagadougou, Burkina Faso","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.24-11-2022.2329806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we discuss quality of experience in multimedia networks. We present an architecture and a survey of machine learning methods to predict the quality of experience in an enterprise multimedia network environment. Our approach is based on subjective methods. It consists of the use PRTG (Paessler Router Traffic Grapher) for QoS (quality of service) data collection and Google Forms for the different users of the network MOS (Minimum Score Opinion) parameters collection. We then implement different supervised machine learning schemes using the data collected, and finally analyze their performance. We compare two classes of algorithms namely regression algorithms and classification algorithms. The Random Forest Classifier in the second class algorithm give the best results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的企业多媒体网络体验质量预测方法
本文讨论了多媒体网络中的体验质量。我们提出了一个架构和机器学习方法的调查,以预测企业多媒体网络环境中的体验质量。我们的方法是基于主观的方法。它由使用PRTG (Paessler Router Traffic Grapher)进行QoS(服务质量)数据收集和使用Google Forms对不同用户的网络MOS (Minimum Score Opinion)参数收集组成。然后我们使用收集到的数据实现不同的监督机器学习方案,最后分析它们的性能。我们比较了两类算法,即回归算法和分类算法。在第二类算法中,随机森林分类器给出了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a machine learning based model for academic performance prediction Simulation of the Impact of Urbanization and Demography on the Demand for School Infrastructure in the City of Ouagadougou: Towards a conceptual framework Analysis of the Complementarity of Two Diagnostic Methods on a PV Generator Machine learning based Quality of Experience (QoE) Prediction Approach in Enterprise Multimedia Networks Traffic Saturation Detection using Hough Transform and VANET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1