Structured Pruning with Automatic Pruning Rate Derivation for Image Processing Neural Networks

Yasufumi Sakai, Akinori Iwakawa, T. Tabaru
{"title":"Structured Pruning with Automatic Pruning Rate Derivation for Image Processing Neural Networks","authors":"Yasufumi Sakai, Akinori Iwakawa, T. Tabaru","doi":"10.1145/3533050.3533066","DOIUrl":null,"url":null,"abstract":"Structured pruning has been proposed for network model compression. Because most of existing structured pruning methods assign pruning rate manually, finding appropriate pruning rate to suppress the degradation of pruned model accuracy is difficult. Although we have been proposed the automatic pruning rate search method, the pruned model performances for complex image processing task such as ImageNet have not been evaluated. In this paper, we demonstrate a performance of the pruned model on ImageNet task using our proposed structured pruning method. Furthermore, we evaluate our pruning method in comparison of the pruned model performance using CIFAR-10 and ImageNet. When using ResNet-34 on ImageNet task, our proposed method reduces model parameters of ResNet-34 by 44.0% with 72.99% accuracy.","PeriodicalId":109214,"journal":{"name":"Proceedings of the 2022 6th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533050.3533066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Structured pruning has been proposed for network model compression. Because most of existing structured pruning methods assign pruning rate manually, finding appropriate pruning rate to suppress the degradation of pruned model accuracy is difficult. Although we have been proposed the automatic pruning rate search method, the pruned model performances for complex image processing task such as ImageNet have not been evaluated. In this paper, we demonstrate a performance of the pruned model on ImageNet task using our proposed structured pruning method. Furthermore, we evaluate our pruning method in comparison of the pruned model performance using CIFAR-10 and ImageNet. When using ResNet-34 on ImageNet task, our proposed method reduces model parameters of ResNet-34 by 44.0% with 72.99% accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像处理神经网络的结构化剪枝与自动剪枝率推导
结构化剪枝被提出用于网络模型压缩。由于现有的结构化剪枝方法大多是手动分配剪枝率,很难找到合适的剪枝率来抑制剪枝模型精度的下降。虽然我们已经提出了自动剪枝率搜索方法,但是对于像ImageNet这样复杂的图像处理任务,剪枝模型的性能还没有得到评价。在本文中,我们使用我们提出的结构化修剪方法演示了修剪模型在ImageNet任务上的性能。此外,我们通过比较CIFAR-10和ImageNet修剪模型的性能来评估我们的修剪方法。当在ImageNet任务上使用ResNet-34时,我们提出的方法将ResNet-34的模型参数降低了44.0%,准确率为72.99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Hybrid PSO and SQP Algorithm in Optimization of the Retardance of Citrate Coated Ferrofluids Coevolutionary Algorithm for Evolving Competitive Strategies in the Weapon Target Assignment Problem A New Discrete Whale Optimization Algorithm with a Spiral 3-opt Local Search for Solving the Traveling Salesperson Problem N-Gram-Based Machine Learning Approach for Bot or Human Detection from Text Messages Assessing the Quality of Car Racing Controllers in a Virtual Setting under Changed Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1