Dirichlet Mixture Allocation for Multiclass Document Collections Modeling

Wei Bian, D. Tao
{"title":"Dirichlet Mixture Allocation for Multiclass Document Collections Modeling","authors":"Wei Bian, D. Tao","doi":"10.1109/ICDM.2009.102","DOIUrl":null,"url":null,"abstract":"Topic model, Latent Dirichlet Allocation (LDA), is an effective tool for statistical analysis of large collections of documents. In LDA, each document is modeled as a mixture of topics and the topic proportions are generated from the unimodal Dirichlet distribution prior. When a collection of documents are drawn from multiple classes, this unimodal prior is insufficient for data fitting. To solve this problem, we exploit the multimodal Dirichlet mixture prior, and propose the Dirichlet mixture allocation (DMA). We report experiments on the popular TDT2 Corpus demonstrating that DMA models a collection of documents more precisely than LDA when the documents are obtained from multiple classes.","PeriodicalId":247645,"journal":{"name":"2009 Ninth IEEE International Conference on Data Mining","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2009.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Topic model, Latent Dirichlet Allocation (LDA), is an effective tool for statistical analysis of large collections of documents. In LDA, each document is modeled as a mixture of topics and the topic proportions are generated from the unimodal Dirichlet distribution prior. When a collection of documents are drawn from multiple classes, this unimodal prior is insufficient for data fitting. To solve this problem, we exploit the multimodal Dirichlet mixture prior, and propose the Dirichlet mixture allocation (DMA). We report experiments on the popular TDT2 Corpus demonstrating that DMA models a collection of documents more precisely than LDA when the documents are obtained from multiple classes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多类文档集合建模的Dirichlet混合分配
主题模型潜狄利克雷分配(Latent Dirichlet Allocation, LDA)是对大量文档进行统计分析的有效工具。在LDA中,每个文档被建模为主题的混合物,主题比例由单峰Dirichlet分布先验生成。当从多个类中提取文档集合时,这种单模态先验不足以进行数据拟合。为了解决这一问题,我们利用多模态Dirichlet混合先验,提出了Dirichlet混合分配(DMA)算法。我们报告了在流行的TDT2语料库上的实验,表明当文档来自多个类时,DMA比LDA更精确地建模文档集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probabilistic Similarity Query on Dimension Incomplete Data Outlier Detection Using Inductive Logic Programming GSML: A Unified Framework for Sparse Metric Learning Naive Bayes Classification of Uncertain Data PEGASUS: A Peta-Scale Graph Mining System Implementation and Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1