Analysis of Multilayer Neural Networks with Direct and Cross-Forward Connection

S. Placzek, B. Adhikari
{"title":"Analysis of Multilayer Neural Networks with Direct and Cross-Forward Connection","authors":"S. Placzek, B. Adhikari","doi":"10.3233/FI-2014-1073","DOIUrl":null,"url":null,"abstract":"Artificial Neural Networks are of much interest for many practical reasons. As of today, they are widely implemented. Of many possible ANNs, the most widely used one is the back-propagation model with direct connection. In this model the input layer is fed with input data and each subsequent layers are fed with the output of preceding layer. This model can be extended by feeding the input data to each layer. This article argues that this new model, named Cross Forward Connection, is optimal than the widely used Direct Connection.","PeriodicalId":286395,"journal":{"name":"International Workshop on Concurrency, Specification and Programming","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Concurrency, Specification and Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/FI-2014-1073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Artificial Neural Networks are of much interest for many practical reasons. As of today, they are widely implemented. Of many possible ANNs, the most widely used one is the back-propagation model with direct connection. In this model the input layer is fed with input data and each subsequent layers are fed with the output of preceding layer. This model can be extended by feeding the input data to each layer. This article argues that this new model, named Cross Forward Connection, is optimal than the widely used Direct Connection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有直接和交叉前向连接的多层神经网络分析
由于许多实际原因,人工神经网络引起了人们的极大兴趣。时至今日,它们已被广泛实施。在许多可能的人工神经网络中,应用最广泛的是具有直接连接的反向传播模型。在这个模型中,输入层是输入数据,每一层都是前一层的输出。可以通过向每一层提供输入数据来扩展该模型。本文认为,这种被称为交叉前向连接(Cross - Forward Connection)的新模式比广泛使用的直接连接(Direct Connection)更优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Heuristics for Optimization of Association Rules Dialogue in Hierarchical Learning of a Concept Using Prototypes and Counterexamples A Function Elimination Method for Checking Satisfiability of Arithmetical Logics Efficient Rough Set Theory Merging Query Rewriting Based on Meta-Granular Aggregation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1