A Recommender Algorithm: Gradient Recurrent Neural Network Applied to Yang-Baxter-Like Equation

Ying Liufu, Long Jin, Mei Liu, Shuai Li
{"title":"A Recommender Algorithm: Gradient Recurrent Neural Network Applied to Yang-Baxter-Like Equation","authors":"Ying Liufu, Long Jin, Mei Liu, Shuai Li","doi":"10.1109/ICDMW51313.2020.00031","DOIUrl":null,"url":null,"abstract":"In this article, a traditional recommender algorithm termed gradient recurrent neural network (GRNN) model is introduced. Allowing for numerous practical problems such as the problems related to recommender systems or multi-agent systems that can be turned into matrix equation problems to resolve, the GRNN model becomes a more critical and promising role. The GRNN model, designed with the assistance of a square-norm-based energy function, is quite applicable to a recommender system and substantiated to be high-efficient in solving convex optimization linear or nonlinear problems. Simultaneously, implementing elaborately a theoretical analysis and numerical experiment computational simulation, the inherent exponential and stable convergence of the GRNN model is validated. With the aid of it, a theoretical nontrivial solution of the Yang-Baxter-like matrix equation $XAX=AXA$ can be obtained successfully.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a traditional recommender algorithm termed gradient recurrent neural network (GRNN) model is introduced. Allowing for numerous practical problems such as the problems related to recommender systems or multi-agent systems that can be turned into matrix equation problems to resolve, the GRNN model becomes a more critical and promising role. The GRNN model, designed with the assistance of a square-norm-based energy function, is quite applicable to a recommender system and substantiated to be high-efficient in solving convex optimization linear or nonlinear problems. Simultaneously, implementing elaborately a theoretical analysis and numerical experiment computational simulation, the inherent exponential and stable convergence of the GRNN model is validated. With the aid of it, a theoretical nontrivial solution of the Yang-Baxter-like matrix equation $XAX=AXA$ can be obtained successfully.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种推荐算法:应用于类yang - baxter方程的梯度递归神经网络
本文介绍了一种传统的推荐算法——梯度递归神经网络模型。考虑到许多实际问题,例如与推荐系统或多智能体系统相关的问题,这些问题可以转化为矩阵方程问题来解决,GRNN模型变得更加关键和有前途。GRNN模型在基于平方范数的能量函数的辅助下设计,非常适用于推荐系统,并且在求解凸优化线性或非线性问题方面具有很高的效率。同时,通过理论分析和数值实验计算仿真,验证了GRNN模型固有的指数收敛性和稳定收敛性。在此基础上,成功地求出了类yang - baxter矩阵方程$XAX=AXA$的理论非平凡解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Data by Principal Component Analysis Deep Contextualized Word Embedding for Text-based Online User Profiling to Detect Social Bots on Twitter Integration of Fuzzy and Deep Learning in Three-Way Decisions Mining Heterogeneous Data for Formulation Design Restructuring of Hoeffding Trees for Trapezoidal Data Streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1