Low-Complexity Robust Adaptive Beamforming Algorithms Exploiting Shrinkage for Mismatch Estimation

H. Ruan, R. D. Lamare
{"title":"Low-Complexity Robust Adaptive Beamforming Algorithms Exploiting Shrinkage for Mismatch Estimation","authors":"H. Ruan, R. D. Lamare","doi":"10.1049/iet-spr.2014.0331","DOIUrl":null,"url":null,"abstract":"This paper proposes low-complexity robust adaptive beamforming (RAB) techniques based on shrinkage methods. We firstly briefly review a Low- Complexity Shrinkage-Based Mismatch Estimation (LOCSME) batch algorithm to estimate the desired signal steering vector mismatch, in which the interference-plus-noise covariance (INC) matrix is also estimated with a recursive matrix shrinkage method. Then we develop low complexity adaptive robust version of the conjugate gradient (CG) algorithm to both estimate the steering vector mismatch and update the beamforming weights. A computational complexity study of the proposed and existing algorithms is carried out. Simulations are conducted in local scattering scenarios and comparisons to existing RAB techniques are provided.","PeriodicalId":212668,"journal":{"name":"2015 Sensor Signal Processing for Defence (SSPD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sensor Signal Processing for Defence (SSPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-spr.2014.0331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper proposes low-complexity robust adaptive beamforming (RAB) techniques based on shrinkage methods. We firstly briefly review a Low- Complexity Shrinkage-Based Mismatch Estimation (LOCSME) batch algorithm to estimate the desired signal steering vector mismatch, in which the interference-plus-noise covariance (INC) matrix is also estimated with a recursive matrix shrinkage method. Then we develop low complexity adaptive robust version of the conjugate gradient (CG) algorithm to both estimate the steering vector mismatch and update the beamforming weights. A computational complexity study of the proposed and existing algorithms is carried out. Simulations are conducted in local scattering scenarios and comparisons to existing RAB techniques are provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用收缩进行失配估计的低复杂度鲁棒自适应波束形成算法
提出了一种基于收缩方法的低复杂度鲁棒自适应波束形成(RAB)技术。我们首先简要回顾了一种基于低复杂度收缩的错配估计(LOCSME)批处理算法,该算法用于估计期望的信号转向向量错配,其中干涉加噪声协方差(INC)矩阵也使用递归矩阵收缩方法估计。然后,我们开发了低复杂度自适应鲁棒的共轭梯度(CG)算法来估计导向矢量失配和更新波束形成权重。对所提算法和现有算法的计算复杂度进行了研究。在局部散射情况下进行了模拟,并与现有的RAB技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Removing Speckle Noise by Analysis Dictionary Learning Extraction of Pulse Repetition Interval Based on Incomplete, Noisy TOA Measurements by the Moving Passive Receiver Traffic Scheduling Algorithm for Wireless Mesh Networks Based Defense Networks Incorporating Centralized Scheduling Architecture Direction of Arrival Estimation Using a Cluster of Beams in a Cone-Shaped Digital Array Radar Distributed Implementation for Person Re-Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1