Optimize AVR system performance by using enhanced genetic algorithm

A. Abdelkhalek, M. Attia, Ammar Mohamed, N. Badra
{"title":"Optimize AVR system performance by using enhanced genetic algorithm","authors":"A. Abdelkhalek, M. Attia, Ammar Mohamed, N. Badra","doi":"10.1109/MEPCON55441.2022.10021789","DOIUrl":null,"url":null,"abstract":"Automatic voltage regulator (AVR) systems play an important role in adjusting the terminal voltage of synchronous generators. Proportional-Integral-Derivative (PID) and Proportional-Integral-Derivative-Acceleration (PIDA) are two types of controllers that are widely used on this issue. To achieve better performance, optimization techniques are used to obtain the best controller gains values that achieve minimum feedback error. However, most of optimization techniques utilized so far are computationally exhausting or suffer slow convergence. Thus, in this research, the Enhanced Genetic Algorithm (EGA) method is proposed to optimize AVR system with PID and PIDA controllers. EGA enforces local search ability using directed operators without loss of genetic divesity in order to achieve better performance. Simulation results and comparative step response analysis show that EGA outperforms other optimization techniques.","PeriodicalId":174878,"journal":{"name":"2022 23rd International Middle East Power Systems Conference (MEPCON)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 23rd International Middle East Power Systems Conference (MEPCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEPCON55441.2022.10021789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic voltage regulator (AVR) systems play an important role in adjusting the terminal voltage of synchronous generators. Proportional-Integral-Derivative (PID) and Proportional-Integral-Derivative-Acceleration (PIDA) are two types of controllers that are widely used on this issue. To achieve better performance, optimization techniques are used to obtain the best controller gains values that achieve minimum feedback error. However, most of optimization techniques utilized so far are computationally exhausting or suffer slow convergence. Thus, in this research, the Enhanced Genetic Algorithm (EGA) method is proposed to optimize AVR system with PID and PIDA controllers. EGA enforces local search ability using directed operators without loss of genetic divesity in order to achieve better performance. Simulation results and comparative step response analysis show that EGA outperforms other optimization techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用增强型遗传算法优化AVR系统性能
自动调压系统在同步发电机端电压调节中起着重要的作用。比例-积分-导数(PID)和比例-积分-导数-加速度(PIDA)是在这一问题上应用最广泛的两种控制器。为了获得更好的性能,使用优化技术来获得实现最小反馈误差的最佳控制器增益值。然而,目前使用的大多数优化技术都是计算消耗或收敛缓慢的。因此,在本研究中,提出了增强遗传算法(EGA)方法来优化PID和PIDA控制器的AVR系统。EGA在不损失遗传多样性的情况下,利用有向算子增强局部搜索能力,以获得更好的性能。仿真结果和阶跃响应对比分析表明,EGA算法优于其他优化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Allocation and Size of FACTS Devices Using Several Optimizers: a Comprehensive Study A Droop-Based Frequency Controller for Parallel Operation of VSCs and SG in Isolated Microgrids A Centralized Protection Scheme for Microgrids with Artificial Neural Network-Based on Fault Detection and Location Development of Fault Ride Through (FRT) Criteria from System Operator Perspective with Large-scale Wind Integration Consensus-Based Tracking Control of Energy Storage for Microgrid Energy Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1