Prediction of Time-Varying Musical Mood Distributions Using Kalman Filtering

Erik M. Schmidt, Youngmoo E. Kim
{"title":"Prediction of Time-Varying Musical Mood Distributions Using Kalman Filtering","authors":"Erik M. Schmidt, Youngmoo E. Kim","doi":"10.1109/ICMLA.2010.101","DOIUrl":null,"url":null,"abstract":"The medium of music has evolved specifically for the expression of emotions, and it is natural for us to organize music in terms of its emotional associations. In previous work, we have modeled human response labels to music in the arousal-valence (A-V) representation of affect as a time-varying, stochastic distribution reflecting the ambiguous nature of the perception of mood. These distributions are used to predict A-V responses from acoustic features of the music alone via multi-variate regression. In this paper, we extend our framework to account for multiple regression mappings contingent upon a general location in A-V space. Furthermore, we model A-V state as the latent variable of a linear dynamical system, more explicitly capturing the dynamics of musical mood. We validate this extension using a \"genie-bounded\" approach, in which we assume that a piece of music is correctly clustered in A-V space a priori, demonstrating significantly higher theoretical performance than the previous single-regressor approach.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

The medium of music has evolved specifically for the expression of emotions, and it is natural for us to organize music in terms of its emotional associations. In previous work, we have modeled human response labels to music in the arousal-valence (A-V) representation of affect as a time-varying, stochastic distribution reflecting the ambiguous nature of the perception of mood. These distributions are used to predict A-V responses from acoustic features of the music alone via multi-variate regression. In this paper, we extend our framework to account for multiple regression mappings contingent upon a general location in A-V space. Furthermore, we model A-V state as the latent variable of a linear dynamical system, more explicitly capturing the dynamics of musical mood. We validate this extension using a "genie-bounded" approach, in which we assume that a piece of music is correctly clustered in A-V space a priori, demonstrating significantly higher theoretical performance than the previous single-regressor approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用卡尔曼滤波预测时变音乐情绪分布
音乐的媒介是专门为表达情感而进化的,我们很自然地根据情感联系来组织音乐。在之前的工作中,我们已经在情感的觉醒价(a -v)表示中模拟了人类对音乐的反应标签,作为一个时变的随机分布,反映了情绪感知的模糊性。这些分布被用来通过多变量回归预测音乐声学特征的A-V响应。在本文中,我们扩展了我们的框架,以考虑基于a - v空间中一般位置的多重回归映射。此外,我们将a - v状态建模为线性动力系统的潜在变量,更明确地捕捉音乐情绪的动态。我们使用“基因边界”方法验证了这一扩展,在这种方法中,我们假设一段音乐先验地正确聚集在a - v空间中,证明了比之前的单回归方法更高的理论性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Analysis of DNA Microarray Data through the Use of Feature Selection Techniques Learning from Multiple Related Data Streams with Asynchronous Flowing Speeds Bayesian Inferences and Forecasting in Spatial Time Series Models A Framework for Comprehensive Electronic QA in Radiation Therapy Model-Based Co-clustering for Continuous Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1