From the Study of Table Trajectories during Collaborative Carriages toward Pro-active Human-Robot Table Handling Tasks

I. Maroger, O. Stasse, B. Watier
{"title":"From the Study of Table Trajectories during Collaborative Carriages toward Pro-active Human-Robot Table Handling Tasks","authors":"I. Maroger, O. Stasse, B. Watier","doi":"10.1109/Humanoids53995.2022.10000081","DOIUrl":null,"url":null,"abstract":"The study of human-human interactions is essential for a better understanding of human behaviour during collaborative tasks. This knowledge is not only interesting in life science but can also be useful in robotic science. Indeed, to efficiently assist a human partner during a human-robot collaboration, the robot needs to be as reactive as a human would be. This can only be achieved by embedding a model of human behaviour into the robot control scheme. In this paper, a human-humanoid robot collaboration to carry a table is tackled. First, the experimental Center of Mass (CoM) trajectories of a table carried by 20 pairs of subjects to various goal positions are studied and modeled using an optimal control problem. Then, based on this model, a prediction process which accurately predicts the table trajectories is designed. Finally, this prediction process is coupled with the robot Walking Pattern Generator (WPG). Using a torque whole-body controller, this framework is tested in simulation on Gazebo on a TALOS humanoid robot model. In this simulation, the robot actively assists a simulated human partner in lifting and carrying a table to an unknown goal position.","PeriodicalId":180816,"journal":{"name":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids53995.2022.10000081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study of human-human interactions is essential for a better understanding of human behaviour during collaborative tasks. This knowledge is not only interesting in life science but can also be useful in robotic science. Indeed, to efficiently assist a human partner during a human-robot collaboration, the robot needs to be as reactive as a human would be. This can only be achieved by embedding a model of human behaviour into the robot control scheme. In this paper, a human-humanoid robot collaboration to carry a table is tackled. First, the experimental Center of Mass (CoM) trajectories of a table carried by 20 pairs of subjects to various goal positions are studied and modeled using an optimal control problem. Then, based on this model, a prediction process which accurately predicts the table trajectories is designed. Finally, this prediction process is coupled with the robot Walking Pattern Generator (WPG). Using a torque whole-body controller, this framework is tested in simulation on Gazebo on a TALOS humanoid robot model. In this simulation, the robot actively assists a simulated human partner in lifting and carrying a table to an unknown goal position.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从协同搬运过程中工作台轨迹的研究到主动人机工作台搬运任务
研究人与人之间的相互作用对于更好地理解协作任务中的人类行为至关重要。这些知识不仅在生命科学中很有趣,而且在机器人科学中也很有用。事实上,为了在人机协作过程中有效地协助人类伙伴,机器人需要像人类一样反应灵敏。这只能通过在机器人控制方案中嵌入人类行为模型来实现。研究了人-人形机器人协同搬运桌子的问题。首先,利用最优控制问题,研究了20对实验对象携带的桌子到不同目标位置的实验质心轨迹,并对其进行了建模。然后,在此基础上,设计了一种能够准确预测工作台轨迹的预测流程。最后,将该预测过程与机器人步行模式生成器(WPG)相结合。利用力矩全身控制器,在TALOS人形机器人模型Gazebo上对该框架进行了仿真测试。在这个模拟中,机器人主动协助模拟的人类伙伴将桌子举起并搬运到一个未知的目标位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling Patient- and Teleoperator-led Robotic Physiotherapy via Strain Map Segmentation and Shared-authority Self-Contained Calibration of an Elastic Humanoid Upper Body Using Only a Head-Mounted RGB Camera Self-collision avoidance in bimanual teleoperation using CollisionIK: algorithm revision and usability experiment Bimanual Manipulation Workspace Analysis of Humanoid Robots with Object Specific Coupling Constraints A Dexterous, Adaptive, Affordable, Humanlike Robot Hand: Towards Prostheses with Dexterous Manipulation Capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1