An Empirical Evaluation of Applying Deep Reinforcement Learning to Taiwanese Mahjong Programs

Hsin Hsueh Chen, Kuo-Chan Huang
{"title":"An Empirical Evaluation of Applying Deep Reinforcement Learning to Taiwanese Mahjong Programs","authors":"Hsin Hsueh Chen, Kuo-Chan Huang","doi":"10.1109/ICASI57738.2023.10179593","DOIUrl":null,"url":null,"abstract":"We introduce deep reinforcement learning (DRL) into a Taiwanese mahjong program, and compare the pros and cons of traditional tree search methods and DRL in terms of effectiveness and efficiency. Our DRL-based program aims to learn good strategies comparable to the state-of-the-art Taiwanese mahjong program Verylongcat, and has demonstrated effective learning capability in the experiments. Moreover, the required computation time of our DRL-based program is significantly lower than the Verylongcat version, bringing great advantage in time-limited tournaments.","PeriodicalId":281254,"journal":{"name":"2023 9th International Conference on Applied System Innovation (ICASI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Applied System Innovation (ICASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASI57738.2023.10179593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce deep reinforcement learning (DRL) into a Taiwanese mahjong program, and compare the pros and cons of traditional tree search methods and DRL in terms of effectiveness and efficiency. Our DRL-based program aims to learn good strategies comparable to the state-of-the-art Taiwanese mahjong program Verylongcat, and has demonstrated effective learning capability in the experiments. Moreover, the required computation time of our DRL-based program is significantly lower than the Verylongcat version, bringing great advantage in time-limited tournaments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度强化学习应用于台湾麻将课程之实证评估
我们将深度强化学习(DRL)引入台湾麻将程序中,并在有效性和效率方面比较传统树搜索方法和DRL的优缺点。我们基于drl的程序旨在学习与最先进的台湾麻将程序Verylongcat相媲美的良好策略,并在实验中显示出有效的学习能力。此外,我们基于drl的程序所需的计算时间明显低于Verylongcat版本,在限时比赛中具有很大的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Detection of Disinformation Based on Chronological and Spatial Topologies Cluster based Indexing for Spatial Analysis on Read-only Database Straight-line Generation Approach using Deep Learning for Mobile Robot Guidance in Lettuce Fields Leveraging the Objective Intelligibility and Noise Estimation to Improve Conformer-Based MetricGAN Analysis of Eye-tracking System Based on Diffractive Waveguide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1