Inertial Body-Worn Sensor Data Segmentation by Boosting Threshold-Based Detectors

Yue Shi, Yuanchun Shi, Xia Wang
{"title":"Inertial Body-Worn Sensor Data Segmentation by Boosting Threshold-Based Detectors","authors":"Yue Shi, Yuanchun Shi, Xia Wang","doi":"10.1109/ISWC.2012.27","DOIUrl":null,"url":null,"abstract":"Using inertial body-worn sensors, we propose a segmentation approach to detect when a user changes actions. We use Adaboost to combine three threshold-based detectors: force/gravity ratios, peaks of autocorrelation, and local minimums of velocity. Experimenting with the CMU Multi-Modal Activity Database, we find that the first two features are the most important, and our combination approach improves performance with an acceptable level of granularity.","PeriodicalId":190627,"journal":{"name":"2012 16th International Symposium on Wearable Computers","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWC.2012.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Using inertial body-worn sensors, we propose a segmentation approach to detect when a user changes actions. We use Adaboost to combine three threshold-based detectors: force/gravity ratios, peaks of autocorrelation, and local minimums of velocity. Experimenting with the CMU Multi-Modal Activity Database, we find that the first two features are the most important, and our combination approach improves performance with an acceptable level of granularity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于阈值增强检测器的惯性体磨损传感器数据分割
利用惯性穿戴式传感器,我们提出了一种分割方法来检测用户何时改变动作。我们使用Adaboost结合三个基于阈值的检测器:力/重力比、自相关峰值和局部最小速度。通过对CMU多模态活动数据库的实验,我们发现前两个特征是最重要的,我们的组合方法在可接受的粒度水平上提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tongue Mounted Interface for Digitally Actuating the Sense of Taste Energy-Efficient Continuous Activity Recognition on Mobile Phones: An Activity-Adaptive Approach Recognizing Daily Life Context Using Web-Collected Audio Data Toe Input Using a Mobile Projector and Kinect Sensor Energy-Efficient Activity Recognition Using Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1